Matches in SemOpenAlex for { <https://semopenalex.org/work/W2890136567> ?p ?o ?g. }
Showing items 1 to 87 of
87
with 100 items per page.
- W2890136567 abstract "This paper deals with the performance comparison of three most effective neural network backpropagation training algorithms such as gradient descent, Boyden, Fletcher, Goldfarb and Shanno (BFGS) based Quasi-Newton (Q-N) and Levenberg-Marquardt (L-M) algorithms. The training of the neural network is carried out based on random datasets considering optimal job sequences of the permutation flow shop problems. In the present investigation, a goal of 0.001 of MSE or 3000 of epochs is set as a goal of learning. The overfitting and overtraining are not allowed during model building to avoid poor generalization ability. The performance of different learning techniques is reported in terms of both solution quality and computational times. The computational results demonstrate that the L-M performs best among the three algorithms with respect to both MSE and R2. However, the gradient descent algorithm is the fastest among them." @default.
- W2890136567 created "2018-09-27" @default.
- W2890136567 creator A5027685569 @default.
- W2890136567 creator A5032020820 @default.
- W2890136567 date "2018-09-19" @default.
- W2890136567 modified "2023-10-16" @default.
- W2890136567 title "Modeling of Flow Shop Scheduling with Effective Training Algorithms-Based Neural Networks" @default.
- W2890136567 cites W1966575776 @default.
- W2890136567 cites W1968909874 @default.
- W2890136567 cites W1988502816 @default.
- W2890136567 cites W1996151042 @default.
- W2890136567 cites W1996504887 @default.
- W2890136567 cites W2005136695 @default.
- W2890136567 cites W2006544565 @default.
- W2890136567 cites W2007676373 @default.
- W2890136567 cites W2024085737 @default.
- W2890136567 cites W2038210983 @default.
- W2890136567 cites W2050360670 @default.
- W2890136567 cites W2059073981 @default.
- W2890136567 cites W2063843205 @default.
- W2890136567 cites W2077493113 @default.
- W2890136567 cites W2081982535 @default.
- W2890136567 cites W2083918846 @default.
- W2890136567 cites W2090069860 @default.
- W2890136567 cites W2092732888 @default.
- W2890136567 cites W2103111465 @default.
- W2890136567 cites W2118371226 @default.
- W2890136567 cites W2133924951 @default.
- W2890136567 cites W2149027038 @default.
- W2890136567 cites W2155482699 @default.
- W2890136567 doi "https://doi.org/10.1007/978-3-030-00612-9_10" @default.
- W2890136567 hasPublicationYear "2018" @default.
- W2890136567 type Work @default.
- W2890136567 sameAs 2890136567 @default.
- W2890136567 citedByCount "0" @default.
- W2890136567 crossrefType "book-chapter" @default.
- W2890136567 hasAuthorship W2890136567A5027685569 @default.
- W2890136567 hasAuthorship W2890136567A5032020820 @default.
- W2890136567 hasConcept C11413529 @default.
- W2890136567 hasConcept C119857082 @default.
- W2890136567 hasConcept C126255220 @default.
- W2890136567 hasConcept C132721684 @default.
- W2890136567 hasConcept C134306372 @default.
- W2890136567 hasConcept C151319957 @default.
- W2890136567 hasConcept C153258448 @default.
- W2890136567 hasConcept C154945302 @default.
- W2890136567 hasConcept C155032097 @default.
- W2890136567 hasConcept C177148314 @default.
- W2890136567 hasConcept C206688291 @default.
- W2890136567 hasConcept C22019652 @default.
- W2890136567 hasConcept C31258907 @default.
- W2890136567 hasConcept C33923547 @default.
- W2890136567 hasConcept C41008148 @default.
- W2890136567 hasConcept C50644808 @default.
- W2890136567 hasConceptScore W2890136567C11413529 @default.
- W2890136567 hasConceptScore W2890136567C119857082 @default.
- W2890136567 hasConceptScore W2890136567C126255220 @default.
- W2890136567 hasConceptScore W2890136567C132721684 @default.
- W2890136567 hasConceptScore W2890136567C134306372 @default.
- W2890136567 hasConceptScore W2890136567C151319957 @default.
- W2890136567 hasConceptScore W2890136567C153258448 @default.
- W2890136567 hasConceptScore W2890136567C154945302 @default.
- W2890136567 hasConceptScore W2890136567C155032097 @default.
- W2890136567 hasConceptScore W2890136567C177148314 @default.
- W2890136567 hasConceptScore W2890136567C206688291 @default.
- W2890136567 hasConceptScore W2890136567C22019652 @default.
- W2890136567 hasConceptScore W2890136567C31258907 @default.
- W2890136567 hasConceptScore W2890136567C33923547 @default.
- W2890136567 hasConceptScore W2890136567C41008148 @default.
- W2890136567 hasConceptScore W2890136567C50644808 @default.
- W2890136567 hasLocation W28901365671 @default.
- W2890136567 hasOpenAccess W2890136567 @default.
- W2890136567 hasPrimaryLocation W28901365671 @default.
- W2890136567 hasRelatedWork W1812775082 @default.
- W2890136567 hasRelatedWork W2114999545 @default.
- W2890136567 hasRelatedWork W2130372754 @default.
- W2890136567 hasRelatedWork W2369590572 @default.
- W2890136567 hasRelatedWork W2557546070 @default.
- W2890136567 hasRelatedWork W2890136567 @default.
- W2890136567 hasRelatedWork W2989932438 @default.
- W2890136567 hasRelatedWork W3159389381 @default.
- W2890136567 hasRelatedWork W2154667020 @default.
- W2890136567 hasRelatedWork W2267701908 @default.
- W2890136567 isParatext "false" @default.
- W2890136567 isRetracted "false" @default.
- W2890136567 magId "2890136567" @default.
- W2890136567 workType "book-chapter" @default.