Matches in SemOpenAlex for { <https://semopenalex.org/work/W2890147606> ?p ?o ?g. }
- W2890147606 endingPage "881" @default.
- W2890147606 startingPage "859" @default.
- W2890147606 abstract "Fluorescent molecules and materials are widely used in many areas in physics, chemistry, and biology as emitters, tags, or sensors. The possibility of controlling their fluorescence signal by light, namely, fluorescence photoswitching, down to the nanoscale level can then dramatically extend their fields of applications. This review focuses on fluorescent and photochromic diarylethene-based nanosystems. The choice of the diarylethene family has been driven by its excellent photoswitching properties (conversion yield, bistability, fatigue resistance), which make them fully appropriate when high-performance behavior is required. The different molecular and nanomaterial designs providing suitable combinations of fluorescence and photochromism are summarized. Besides the inherently fluorescent diarylethene molecules, chemical association between photochromic and fluorescent molecular units can advantageously lead to fluorescence photoswitching thanks to resonance energy transfer or intramolecular electron transfer processes. Furthermore, the preparation of nanoscale emissive materials involving diarylethene units paves the way to new interesting features, such as near-infrared control of emissive and photoswitchable nanohybrids, giant amplification of the fluorescence photoswitching in organic nanoparticles, or fluorescence color modulation. Many applications derived from such fluorescent diarylethene-based molecules and nanomaterials have been developed recently, especially in the field of biology for fluorescence biolabeling and super-resolution imaging but also for photocontrol of biological functions. Extremely promising prospects are expected in the near future. Photosensitive chemicals that transform in response to light are helping researchers develop probes for both imaging and manipulating biomolecules. Tuyoshi Fukaminato from Kumamoto University in Japan and Rémi Métivier at France’s Université Paris-Saclay review efforts to produce color-changing compounds by combining fluorescent dyes with diarylethenes, stable organic molecules that can switch between open- and closed-ring shapes. Experiments showing that certain ring-closing reactions can paralyze worms demonstrate how biological events could be switched on at the same time as the probes are activated. Probes that light up after photo-transformations are becoming increasingly important in super-resolution images of single cells. Advanced composites, such as polymer nanoparticles that encapsulate the dyes and diarylethenes and keep them precisely separated, have provided multi-color internal views of small animals, including mice and zebrafish. Fluorescent diarylethenes are the most attractive molecules for several applications, such as optical memories, optical switches, or probes for the imaging technology. A wide variety of fluorescent diarylethenes combining with organic fluorophores, emissive polymers, or fluorescent inorganic materials have been developed from the molecular level to the nanoscale during the past decade. In this review, the different molecular and nanomaterial designs providing suitable fluorescence photoswitching property are introduced. Furthermore, the recent development of new applications using fluorescent diarylethene-based molecules and nanomaterials are also summarized." @default.
- W2890147606 created "2018-09-27" @default.
- W2890147606 creator A5022054582 @default.
- W2890147606 creator A5081254140 @default.
- W2890147606 creator A5091203246 @default.
- W2890147606 date "2018-09-01" @default.
- W2890147606 modified "2023-10-11" @default.
- W2890147606 title "Photochromic fluorophores at the molecular and nanoparticle levels: fundamentals and applications of diarylethenes" @default.
- W2890147606 cites W1888907037 @default.
- W2890147606 cites W1974642741 @default.
- W2890147606 cites W1975674918 @default.
- W2890147606 cites W1975756017 @default.
- W2890147606 cites W1984463174 @default.
- W2890147606 cites W1986176923 @default.
- W2890147606 cites W1988764395 @default.
- W2890147606 cites W1990149084 @default.
- W2890147606 cites W1993534007 @default.
- W2890147606 cites W2000174146 @default.
- W2890147606 cites W2001584196 @default.
- W2890147606 cites W2003406884 @default.
- W2890147606 cites W2005303542 @default.
- W2890147606 cites W2008351625 @default.
- W2890147606 cites W2018547816 @default.
- W2890147606 cites W2019611106 @default.
- W2890147606 cites W2020471807 @default.
- W2890147606 cites W2054308157 @default.
- W2890147606 cites W2054537528 @default.
- W2890147606 cites W2054766586 @default.
- W2890147606 cites W2057916759 @default.
- W2890147606 cites W2058028078 @default.
- W2890147606 cites W2058197798 @default.
- W2890147606 cites W2061955739 @default.
- W2890147606 cites W2062948899 @default.
- W2890147606 cites W2064424591 @default.
- W2890147606 cites W2064677971 @default.
- W2890147606 cites W2069022257 @default.
- W2890147606 cites W2072865366 @default.
- W2890147606 cites W2074612467 @default.
- W2890147606 cites W2076908776 @default.
- W2890147606 cites W2077348796 @default.
- W2890147606 cites W2077750201 @default.
- W2890147606 cites W2086237586 @default.
- W2890147606 cites W2090329067 @default.
- W2890147606 cites W2091620710 @default.
- W2890147606 cites W2092469837 @default.
- W2890147606 cites W2101509442 @default.
- W2890147606 cites W2106697402 @default.
- W2890147606 cites W2108810090 @default.
- W2890147606 cites W2110885200 @default.
- W2890147606 cites W2115737236 @default.
- W2890147606 cites W2121503635 @default.
- W2890147606 cites W2122336953 @default.
- W2890147606 cites W2124793482 @default.
- W2890147606 cites W2129586748 @default.
- W2890147606 cites W2134834667 @default.
- W2890147606 cites W2135162225 @default.
- W2890147606 cites W2143497273 @default.
- W2890147606 cites W2144429202 @default.
- W2890147606 cites W2146732597 @default.
- W2890147606 cites W2148924929 @default.
- W2890147606 cites W2154321074 @default.
- W2890147606 cites W2154790951 @default.
- W2890147606 cites W2158020202 @default.
- W2890147606 cites W2159182565 @default.
- W2890147606 cites W2159215382 @default.
- W2890147606 cites W2162915475 @default.
- W2890147606 cites W2163501798 @default.
- W2890147606 cites W2165426381 @default.
- W2890147606 cites W2169791141 @default.
- W2890147606 cites W2170450342 @default.
- W2890147606 cites W2170822435 @default.
- W2890147606 cites W2171871106 @default.
- W2890147606 cites W2242921777 @default.
- W2890147606 cites W2295227668 @default.
- W2890147606 cites W2297389856 @default.
- W2890147606 cites W2319774976 @default.
- W2890147606 cites W2320811399 @default.
- W2890147606 cites W2321077391 @default.
- W2890147606 cites W2321149562 @default.
- W2890147606 cites W2323082192 @default.
- W2890147606 cites W2328307544 @default.
- W2890147606 cites W2330760879 @default.
- W2890147606 cites W2330973556 @default.
- W2890147606 cites W2335732645 @default.
- W2890147606 cites W2342819535 @default.
- W2890147606 cites W2518892292 @default.
- W2890147606 cites W2530700439 @default.
- W2890147606 cites W2533608121 @default.
- W2890147606 cites W2553110750 @default.
- W2890147606 cites W2590258100 @default.
- W2890147606 cites W2591932223 @default.
- W2890147606 cites W2595739729 @default.
- W2890147606 cites W2609030622 @default.
- W2890147606 cites W2618574806 @default.
- W2890147606 cites W2627022332 @default.
- W2890147606 cites W2735515810 @default.
- W2890147606 cites W2747425270 @default.
- W2890147606 cites W2758207712 @default.