Matches in SemOpenAlex for { <https://semopenalex.org/work/W2890149403> ?p ?o ?g. }
- W2890149403 endingPage "114001" @default.
- W2890149403 startingPage "114001" @default.
- W2890149403 abstract "Objective: Recent advantages in mHealth-enabled ECG recorders boosted the demand for algorithms, which are able to automatically detect cardiac anomalies with high accuracy. Approach: We present a combined method of classical signal analysis and machine learning which has been developed during the Computing in Cardiology Challenge (CinC) 2017. Almost 400 hand-crafted features have been developed to reflect the complex physiology of cardiac arrhythmias and their appearance in single-channel ECG recordings. For the scope of this article, we performed several experiments on the publicly available challenge dataset to improve the classification accuracy. We compared the performance of two tree-based algorithms—gradient boosted trees and random forests—using different parameters for learning. We assessed the influence of five different sets of training annotations on the classifiers performance. Further, we present a new web-based ECG viewer to review and correct the training labels of a signal data set. Moreover, we analysed the feature importance and evaluated the model performance when using only a subset of the features. The primary data source used in the analysis was the dataset of the CinC 2017, consisting of 8528 signals from four classes. Our best results were achieved using a gradient boosted tree model which worked significantly better than random forests. Main results: Official results of the challenge follow-up phase provided by the Challenge organizers on the full hidden test set are 90.8% (Normal), 84.1% (AF), 74.5% (Other), resulting in a mean F1-score of 83.2%, which was only 1.6% behind the challenge winner and 0.2% ahead of the next-best algorithm. Official results were rounded to two decimal places which lead to the equal-second best F1F-score of 83% with five others. Significance: The algorithm achieved the second-best score among 80 algorithms of the Challenge follow-up phase equal with five others." @default.
- W2890149403 created "2018-09-27" @default.
- W2890149403 creator A5007422734 @default.
- W2890149403 creator A5007533806 @default.
- W2890149403 creator A5008205654 @default.
- W2890149403 creator A5008634226 @default.
- W2890149403 creator A5019183795 @default.
- W2890149403 creator A5026251864 @default.
- W2890149403 creator A5031094190 @default.
- W2890149403 creator A5060933652 @default.
- W2890149403 creator A5066839719 @default.
- W2890149403 date "2018-10-30" @default.
- W2890149403 modified "2023-10-02" @default.
- W2890149403 title "Cardiac anomaly detection based on time and frequency domain features using tree-based classifiers" @default.
- W2890149403 cites W1468476315 @default.
- W2890149403 cites W1678356000 @default.
- W2890149403 cites W2012955697 @default.
- W2890149403 cites W2038240305 @default.
- W2890149403 cites W2127913883 @default.
- W2890149403 cites W2162273778 @default.
- W2890149403 cites W2251482333 @default.
- W2890149403 cites W2548829559 @default.
- W2890149403 cites W2794633590 @default.
- W2890149403 cites W2795153139 @default.
- W2890149403 cites W2911964244 @default.
- W2890149403 cites W3102476541 @default.
- W2890149403 doi "https://doi.org/10.1088/1361-6579/aae13e" @default.
- W2890149403 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/30211688" @default.
- W2890149403 hasPublicationYear "2018" @default.
- W2890149403 type Work @default.
- W2890149403 sameAs 2890149403 @default.
- W2890149403 citedByCount "18" @default.
- W2890149403 countsByYear W28901494032018 @default.
- W2890149403 countsByYear W28901494032019 @default.
- W2890149403 countsByYear W28901494032020 @default.
- W2890149403 countsByYear W28901494032021 @default.
- W2890149403 countsByYear W28901494032022 @default.
- W2890149403 countsByYear W28901494032023 @default.
- W2890149403 crossrefType "journal-article" @default.
- W2890149403 hasAuthorship W2890149403A5007422734 @default.
- W2890149403 hasAuthorship W2890149403A5007533806 @default.
- W2890149403 hasAuthorship W2890149403A5008205654 @default.
- W2890149403 hasAuthorship W2890149403A5008634226 @default.
- W2890149403 hasAuthorship W2890149403A5019183795 @default.
- W2890149403 hasAuthorship W2890149403A5026251864 @default.
- W2890149403 hasAuthorship W2890149403A5031094190 @default.
- W2890149403 hasAuthorship W2890149403A5060933652 @default.
- W2890149403 hasAuthorship W2890149403A5066839719 @default.
- W2890149403 hasConcept C113174947 @default.
- W2890149403 hasConcept C119857082 @default.
- W2890149403 hasConcept C124101348 @default.
- W2890149403 hasConcept C134306372 @default.
- W2890149403 hasConcept C138885662 @default.
- W2890149403 hasConcept C148524875 @default.
- W2890149403 hasConcept C153180895 @default.
- W2890149403 hasConcept C154945302 @default.
- W2890149403 hasConcept C169258074 @default.
- W2890149403 hasConcept C169903167 @default.
- W2890149403 hasConcept C177264268 @default.
- W2890149403 hasConcept C199360897 @default.
- W2890149403 hasConcept C2776401178 @default.
- W2890149403 hasConcept C2779843651 @default.
- W2890149403 hasConcept C33923547 @default.
- W2890149403 hasConcept C41008148 @default.
- W2890149403 hasConcept C41895202 @default.
- W2890149403 hasConcept C51632099 @default.
- W2890149403 hasConcept C58489278 @default.
- W2890149403 hasConcept C739882 @default.
- W2890149403 hasConcept C84525736 @default.
- W2890149403 hasConceptScore W2890149403C113174947 @default.
- W2890149403 hasConceptScore W2890149403C119857082 @default.
- W2890149403 hasConceptScore W2890149403C124101348 @default.
- W2890149403 hasConceptScore W2890149403C134306372 @default.
- W2890149403 hasConceptScore W2890149403C138885662 @default.
- W2890149403 hasConceptScore W2890149403C148524875 @default.
- W2890149403 hasConceptScore W2890149403C153180895 @default.
- W2890149403 hasConceptScore W2890149403C154945302 @default.
- W2890149403 hasConceptScore W2890149403C169258074 @default.
- W2890149403 hasConceptScore W2890149403C169903167 @default.
- W2890149403 hasConceptScore W2890149403C177264268 @default.
- W2890149403 hasConceptScore W2890149403C199360897 @default.
- W2890149403 hasConceptScore W2890149403C2776401178 @default.
- W2890149403 hasConceptScore W2890149403C2779843651 @default.
- W2890149403 hasConceptScore W2890149403C33923547 @default.
- W2890149403 hasConceptScore W2890149403C41008148 @default.
- W2890149403 hasConceptScore W2890149403C41895202 @default.
- W2890149403 hasConceptScore W2890149403C51632099 @default.
- W2890149403 hasConceptScore W2890149403C58489278 @default.
- W2890149403 hasConceptScore W2890149403C739882 @default.
- W2890149403 hasConceptScore W2890149403C84525736 @default.
- W2890149403 hasIssue "11" @default.
- W2890149403 hasLocation W28901494031 @default.
- W2890149403 hasLocation W28901494032 @default.
- W2890149403 hasOpenAccess W2890149403 @default.
- W2890149403 hasPrimaryLocation W28901494031 @default.
- W2890149403 hasRelatedWork W3185179407 @default.
- W2890149403 hasRelatedWork W3201070945 @default.
- W2890149403 hasRelatedWork W4200057378 @default.