Matches in SemOpenAlex for { <https://semopenalex.org/work/W2890156334> ?p ?o ?g. }
- W2890156334 endingPage "18011" @default.
- W2890156334 startingPage "18003" @default.
- W2890156334 abstract "Abstract In situ growth of metallic MoO 2 films on fluorine‐doped tin oxide (FTO) and MoO 2 powder in solution was achieved simultaneously by a simple hydrothermal process employing citric acid as the surfactant. The growth mechanism of MoO 2 nanostructures (NSs) at the heterogeneous interface and in homogeneous medium proceeds in a different manner in which seeds grow in a preferred orientation on FTO, whereas they propagate in all directions in solution. The high lattice matching of FTO and MoO 2 favours the film growth which could not be obtained on other conventional substrates. The disc morphology of MoO 2 nanostructures was changed to other diverse morphology by varying the synthesis conditions, particularly by the addition of nitric acid. A competitive effect of nitric acid and citric acid on the structure direction produced various shapes. The electrochemical water activation studies show that hydrogen‐annealed MoO 2 is an excellent hydrogen evolution reaction (HER) catalyst with good stability. H‐MoO 2 film/FTO displays a low onset overpotential of72 mV with a Tafel slope of 84.1 mV dec −1 , whereas the powder form exhibits an onset overpotential of 46 mV with a Tafel slope of 71.6 mV dec −1 . The large active surface area, exposure of fringe facets of (110) and the lesser electrochemical charge‐transfer resistance offered by the hydrogen‐annealed MoO 2 NSs play a major role in the enhanced HER activity." @default.
- W2890156334 created "2018-09-27" @default.
- W2890156334 creator A5011563998 @default.
- W2890156334 creator A5067192957 @default.
- W2890156334 creator A5070218317 @default.
- W2890156334 creator A5086281242 @default.
- W2890156334 date "2018-11-08" @default.
- W2890156334 modified "2023-10-15" @default.
- W2890156334 title "Designing Metallic MoO<sub>2</sub> Nanostructures on Rigid Substrates for Electrochemical Water Activation" @default.
- W2890156334 cites W10529447 @default.
- W2890156334 cites W1163165735 @default.
- W2890156334 cites W1521419660 @default.
- W2890156334 cites W1931816504 @default.
- W2890156334 cites W1938663346 @default.
- W2890156334 cites W1942860844 @default.
- W2890156334 cites W1960685472 @default.
- W2890156334 cites W1966367864 @default.
- W2890156334 cites W1966762376 @default.
- W2890156334 cites W1974532451 @default.
- W2890156334 cites W1975297922 @default.
- W2890156334 cites W1977889170 @default.
- W2890156334 cites W1981983176 @default.
- W2890156334 cites W1985742556 @default.
- W2890156334 cites W1987933164 @default.
- W2890156334 cites W1993152680 @default.
- W2890156334 cites W1999489660 @default.
- W2890156334 cites W2000942354 @default.
- W2890156334 cites W2002806438 @default.
- W2890156334 cites W2013303305 @default.
- W2890156334 cites W2016721948 @default.
- W2890156334 cites W2029248054 @default.
- W2890156334 cites W2030379583 @default.
- W2890156334 cites W2036529020 @default.
- W2890156334 cites W2040077883 @default.
- W2890156334 cites W2040373821 @default.
- W2890156334 cites W2056616404 @default.
- W2890156334 cites W2058013384 @default.
- W2890156334 cites W2079980485 @default.
- W2890156334 cites W2082016750 @default.
- W2890156334 cites W2090818530 @default.
- W2890156334 cites W2092541282 @default.
- W2890156334 cites W2093017014 @default.
- W2890156334 cites W2095168113 @default.
- W2890156334 cites W2113460565 @default.
- W2890156334 cites W2128628711 @default.
- W2890156334 cites W2137205267 @default.
- W2890156334 cites W2235327656 @default.
- W2890156334 cites W2291607027 @default.
- W2890156334 cites W2304631279 @default.
- W2890156334 cites W2312321370 @default.
- W2890156334 cites W2315646992 @default.
- W2890156334 cites W2318713233 @default.
- W2890156334 cites W2529227375 @default.
- W2890156334 cites W2560622252 @default.
- W2890156334 cites W2574316375 @default.
- W2890156334 cites W2580821184 @default.
- W2890156334 cites W2587742604 @default.
- W2890156334 cites W2590047498 @default.
- W2890156334 cites W2609022200 @default.
- W2890156334 cites W2762260579 @default.
- W2890156334 cites W2763537434 @default.
- W2890156334 cites W2765780518 @default.
- W2890156334 cites W2779420128 @default.
- W2890156334 cites W2793297126 @default.
- W2890156334 cites W3131685164 @default.
- W2890156334 cites W4382140833 @default.
- W2890156334 doi "https://doi.org/10.1002/chem.201803570" @default.
- W2890156334 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/30182524" @default.
- W2890156334 hasPublicationYear "2018" @default.
- W2890156334 type Work @default.
- W2890156334 sameAs 2890156334 @default.
- W2890156334 citedByCount "32" @default.
- W2890156334 countsByYear W28901563342019 @default.
- W2890156334 countsByYear W28901563342020 @default.
- W2890156334 countsByYear W28901563342021 @default.
- W2890156334 countsByYear W28901563342022 @default.
- W2890156334 countsByYear W28901563342023 @default.
- W2890156334 crossrefType "journal-article" @default.
- W2890156334 hasAuthorship W2890156334A5011563998 @default.
- W2890156334 hasAuthorship W2890156334A5067192957 @default.
- W2890156334 hasAuthorship W2890156334A5070218317 @default.
- W2890156334 hasAuthorship W2890156334A5086281242 @default.
- W2890156334 hasConcept C127413603 @default.
- W2890156334 hasConcept C147789679 @default.
- W2890156334 hasConcept C161790260 @default.
- W2890156334 hasConcept C171250308 @default.
- W2890156334 hasConcept C172404476 @default.
- W2890156334 hasConcept C17525397 @default.
- W2890156334 hasConcept C178790620 @default.
- W2890156334 hasConcept C179104552 @default.
- W2890156334 hasConcept C185592680 @default.
- W2890156334 hasConcept C186460083 @default.
- W2890156334 hasConcept C191897082 @default.
- W2890156334 hasConcept C192562407 @default.
- W2890156334 hasConcept C2779851234 @default.
- W2890156334 hasConcept C2780924660 @default.
- W2890156334 hasConcept C42360764 @default.
- W2890156334 hasConcept C52859227 @default.