Matches in SemOpenAlex for { <https://semopenalex.org/work/W2890161817> ?p ?o ?g. }
- W2890161817 abstract "We analytically characterize the influence of a neighboring metal nanoparticle (MNP) on the behavioral trends of a quantum dot (QD) using a generalized nonlocal optical response (GNOR) method based approach, taking the MNP distance dependent modifications to the QD population relaxation and dephasing rates into account. The GNOR model is a recent generalization and an extension of the hydrodynamic Drude model (HDM), which goes beyond HDM by taking into account both the convection current and electron diffusion in the MNPs. It allows unified theoretical explanation of some experimentally observed plasmonic phenomena which otherwise would require ab initio analysis as the conventional local response approximation (LRA) fails to account for them. For example, it has been demonstrated in literature that the GNOR model captures size dependent resonance shifts of small MNPs which are unrevealed by the conventional LRA based methods, and it has proven to yield results displaying better agreement with the experimental observations for plasmonic experiments. Attempts to incorporate MNP nonlocal effects in the analytical characterization of vicinal excitons found in literature utilize the phenomenological hydrodynamic model and assume the absence of MNP interband effects. Moreover, they are only applicable to narrow parameter regions. In this paper we present a complete analytical characterization which overcomes these drawbacks and lends to the perusal of the system over wide continua of various parameters, enabling us to get an elevated view at a much lesser level of complexity compared to the conventional LRA based numerical methods or the conventional ab initio methods of accounting for the nonlocal effects. Our proposed GNOR based model predicts strong modifications to various QD properties such as population difference, absorption, MNP induced shifts to excitonic energy and Forster enhanced broadening, coherent plasmonic field enhancement, and quantum state purity, compared to the conventional LRA based predictions. Such modifications are prominent with small MNP radii, high QD dipole moments, small detunings (of the coherent external illumination from the bare excitonic resonance), and near parameter regions exhibiting plasmonic meta resonance (PMR)-like behavior. Moreover, our complete analytical characterization enables optimization of the large system parameter space for different applications, a luxury not fully offered by the methods currently available in literature." @default.
- W2890161817 created "2018-09-27" @default.
- W2890161817 creator A5024429715 @default.
- W2890161817 creator A5029769998 @default.
- W2890161817 creator A5074931384 @default.
- W2890161817 creator A5076597639 @default.
- W2890161817 creator A5088983596 @default.
- W2890161817 date "2018-09-18" @default.
- W2890161817 modified "2023-10-01" @default.
- W2890161817 title "Exciton behavior under the influence of metal nanoparticle near fields: Significance of nonlocal effects" @default.
- W2890161817 cites W1002587171 @default.
- W2890161817 cites W1927795053 @default.
- W2890161817 cites W1966464358 @default.
- W2890161817 cites W1969466997 @default.
- W2890161817 cites W1972667471 @default.
- W2890161817 cites W1979029367 @default.
- W2890161817 cites W1984251057 @default.
- W2890161817 cites W1987234208 @default.
- W2890161817 cites W1987342594 @default.
- W2890161817 cites W1999041388 @default.
- W2890161817 cites W2003995109 @default.
- W2890161817 cites W2008563091 @default.
- W2890161817 cites W2010226908 @default.
- W2890161817 cites W2010329484 @default.
- W2890161817 cites W2011027097 @default.
- W2890161817 cites W2011464846 @default.
- W2890161817 cites W2026377209 @default.
- W2890161817 cites W2032572649 @default.
- W2890161817 cites W2035140874 @default.
- W2890161817 cites W2043294302 @default.
- W2890161817 cites W2065282231 @default.
- W2890161817 cites W2066259996 @default.
- W2890161817 cites W2074418654 @default.
- W2890161817 cites W2076909402 @default.
- W2890161817 cites W2079681070 @default.
- W2890161817 cites W2083926174 @default.
- W2890161817 cites W2093195875 @default.
- W2890161817 cites W2093375599 @default.
- W2890161817 cites W2094905941 @default.
- W2890161817 cites W2103282498 @default.
- W2890161817 cites W2141679678 @default.
- W2890161817 cites W2155193757 @default.
- W2890161817 cites W2159981054 @default.
- W2890161817 cites W2160741150 @default.
- W2890161817 cites W2267541314 @default.
- W2890161817 cites W2315230017 @default.
- W2890161817 cites W2318093414 @default.
- W2890161817 cites W2330664620 @default.
- W2890161817 cites W2340870622 @default.
- W2890161817 cites W2417205308 @default.
- W2890161817 cites W2418748642 @default.
- W2890161817 cites W2475285068 @default.
- W2890161817 cites W2516568711 @default.
- W2890161817 cites W2521923377 @default.
- W2890161817 cites W2582082064 @default.
- W2890161817 cites W2609489183 @default.
- W2890161817 cites W2677630587 @default.
- W2890161817 cites W2684959314 @default.
- W2890161817 cites W2748026861 @default.
- W2890161817 cites W2765783712 @default.
- W2890161817 cites W2767085022 @default.
- W2890161817 cites W2780156364 @default.
- W2890161817 cites W2793220040 @default.
- W2890161817 cites W2803408449 @default.
- W2890161817 cites W2803871351 @default.
- W2890161817 cites W2953386322 @default.
- W2890161817 cites W2962756303 @default.
- W2890161817 cites W2990187872 @default.
- W2890161817 cites W2999192065 @default.
- W2890161817 cites W3101984056 @default.
- W2890161817 cites W3103262009 @default.
- W2890161817 cites W3141554777 @default.
- W2890161817 cites W4296862 @default.
- W2890161817 doi "https://doi.org/10.1103/physrevb.98.115430" @default.
- W2890161817 hasPublicationYear "2018" @default.
- W2890161817 type Work @default.
- W2890161817 sameAs 2890161817 @default.
- W2890161817 citedByCount "19" @default.
- W2890161817 countsByYear W28901618172019 @default.
- W2890161817 countsByYear W28901618172020 @default.
- W2890161817 countsByYear W28901618172021 @default.
- W2890161817 countsByYear W28901618172022 @default.
- W2890161817 countsByYear W28901618172023 @default.
- W2890161817 crossrefType "journal-article" @default.
- W2890161817 hasAuthorship W2890161817A5024429715 @default.
- W2890161817 hasAuthorship W2890161817A5029769998 @default.
- W2890161817 hasAuthorship W2890161817A5074931384 @default.
- W2890161817 hasAuthorship W2890161817A5076597639 @default.
- W2890161817 hasAuthorship W2890161817A5088983596 @default.
- W2890161817 hasConcept C121332964 @default.
- W2890161817 hasConcept C155672457 @default.
- W2890161817 hasConcept C171250308 @default.
- W2890161817 hasConcept C17729963 @default.
- W2890161817 hasConcept C191897082 @default.
- W2890161817 hasConcept C192562407 @default.
- W2890161817 hasConcept C26873012 @default.
- W2890161817 hasConcept C544153396 @default.
- W2890161817 hasConceptScore W2890161817C121332964 @default.
- W2890161817 hasConceptScore W2890161817C155672457 @default.
- W2890161817 hasConceptScore W2890161817C171250308 @default.