Matches in SemOpenAlex for { <https://semopenalex.org/work/W2890167193> ?p ?o ?g. }
- W2890167193 endingPage "2443" @default.
- W2890167193 startingPage "2430" @default.
- W2890167193 abstract "In this paper, we focus on the distributed state estimation of nonlinear systems comprised of several subsystems. We assume that a decentralized state estimation system already exists for the nonlinear system, where the local estimators can be of different types. In order to achieve improved estimation performance, the existing decentralized estimators may be connected together via a communication network to form a distributed state estimation network. We propose a systematic approach to take advantage of the existing decentralized estimators potentially of different types to form a distributed state estimation network without performing a complete redesign of the estimation system. Specifically, a compensator is designed for each subsystem, and is connected to the corresponding decentralized estimator to obtain an augmented estimator (AE). The AEs for the subsystems communicate with each other to exchange subsystem state estimates and measurements via a communication network every sampling time. We derive sufficient conditions on the convergence and boundedness of the estimation error of the proposed distributed estimation network. The proposed approach is demonstrated via the application to two chemical process examples and one hybrid tank plant." @default.
- W2890167193 created "2018-09-27" @default.
- W2890167193 creator A5006902064 @default.
- W2890167193 creator A5032657663 @default.
- W2890167193 creator A5045426895 @default.
- W2890167193 date "2019-11-01" @default.
- W2890167193 modified "2023-10-18" @default.
- W2890167193 title "Forming Distributed State Estimation Network From Decentralized Estimators" @default.
- W2890167193 cites W1828718966 @default.
- W2890167193 cites W1858489413 @default.
- W2890167193 cites W1963688148 @default.
- W2890167193 cites W1984651876 @default.
- W2890167193 cites W1996193936 @default.
- W2890167193 cites W2006787156 @default.
- W2890167193 cites W2007527329 @default.
- W2890167193 cites W2008336133 @default.
- W2890167193 cites W2020534137 @default.
- W2890167193 cites W2031096847 @default.
- W2890167193 cites W2038561575 @default.
- W2890167193 cites W2050691474 @default.
- W2890167193 cites W2051020547 @default.
- W2890167193 cites W2059119683 @default.
- W2890167193 cites W2071367014 @default.
- W2890167193 cites W2082683014 @default.
- W2890167193 cites W2104192126 @default.
- W2890167193 cites W2105576913 @default.
- W2890167193 cites W2112459023 @default.
- W2890167193 cites W2115852080 @default.
- W2890167193 cites W2120481993 @default.
- W2890167193 cites W2125859607 @default.
- W2890167193 cites W2126119985 @default.
- W2890167193 cites W2131869695 @default.
- W2890167193 cites W2133225156 @default.
- W2890167193 cites W2134535165 @default.
- W2890167193 cites W2144132844 @default.
- W2890167193 cites W2146487916 @default.
- W2890167193 cites W2173487526 @default.
- W2890167193 cites W2187498180 @default.
- W2890167193 cites W2286561681 @default.
- W2890167193 cites W2296787152 @default.
- W2890167193 cites W2440572060 @default.
- W2890167193 cites W2591808198 @default.
- W2890167193 cites W2594638107 @default.
- W2890167193 cites W2735830662 @default.
- W2890167193 cites W2960779389 @default.
- W2890167193 cites W3081737306 @default.
- W2890167193 cites W4237445386 @default.
- W2890167193 doi "https://doi.org/10.1109/tcst.2018.2866556" @default.
- W2890167193 hasPublicationYear "2019" @default.
- W2890167193 type Work @default.
- W2890167193 sameAs 2890167193 @default.
- W2890167193 citedByCount "27" @default.
- W2890167193 countsByYear W28901671932018 @default.
- W2890167193 countsByYear W28901671932019 @default.
- W2890167193 countsByYear W28901671932020 @default.
- W2890167193 countsByYear W28901671932021 @default.
- W2890167193 countsByYear W28901671932022 @default.
- W2890167193 countsByYear W28901671932023 @default.
- W2890167193 crossrefType "journal-article" @default.
- W2890167193 hasAuthorship W2890167193A5006902064 @default.
- W2890167193 hasAuthorship W2890167193A5032657663 @default.
- W2890167193 hasAuthorship W2890167193A5045426895 @default.
- W2890167193 hasConcept C105795698 @default.
- W2890167193 hasConcept C111919701 @default.
- W2890167193 hasConcept C11413529 @default.
- W2890167193 hasConcept C121332964 @default.
- W2890167193 hasConcept C126255220 @default.
- W2890167193 hasConcept C127413603 @default.
- W2890167193 hasConcept C154945302 @default.
- W2890167193 hasConcept C158622935 @default.
- W2890167193 hasConcept C162324750 @default.
- W2890167193 hasConcept C185429906 @default.
- W2890167193 hasConcept C192126672 @default.
- W2890167193 hasConcept C201995342 @default.
- W2890167193 hasConcept C2775924081 @default.
- W2890167193 hasConcept C2777303404 @default.
- W2890167193 hasConcept C2984536560 @default.
- W2890167193 hasConcept C33923547 @default.
- W2890167193 hasConcept C41008148 @default.
- W2890167193 hasConcept C47446073 @default.
- W2890167193 hasConcept C48103436 @default.
- W2890167193 hasConcept C50522688 @default.
- W2890167193 hasConcept C62520636 @default.
- W2890167193 hasConcept C76155785 @default.
- W2890167193 hasConcept C96250715 @default.
- W2890167193 hasConcept C98045186 @default.
- W2890167193 hasConceptScore W2890167193C105795698 @default.
- W2890167193 hasConceptScore W2890167193C111919701 @default.
- W2890167193 hasConceptScore W2890167193C11413529 @default.
- W2890167193 hasConceptScore W2890167193C121332964 @default.
- W2890167193 hasConceptScore W2890167193C126255220 @default.
- W2890167193 hasConceptScore W2890167193C127413603 @default.
- W2890167193 hasConceptScore W2890167193C154945302 @default.
- W2890167193 hasConceptScore W2890167193C158622935 @default.
- W2890167193 hasConceptScore W2890167193C162324750 @default.
- W2890167193 hasConceptScore W2890167193C185429906 @default.
- W2890167193 hasConceptScore W2890167193C192126672 @default.
- W2890167193 hasConceptScore W2890167193C201995342 @default.