Matches in SemOpenAlex for { <https://semopenalex.org/work/W2890167756> ?p ?o ?g. }
Showing items 1 to 83 of
83
with 100 items per page.
- W2890167756 abstract "Term is the linguistic expression of the concepts in professional knowledge, which are accumulated through incremental exploration and research in specific fields. In the study of intelligence analysis and knowledge organization, term extraction is an important research subject. Deep neural network is an algorithm based on machine learning. It aims to obtain high-level features that can better represent raw data through learning by multilayer structure. Though machine learning has been widely used in studies in many fields, it is rarely mentioned in term extraction. The paper combines traditional method of extraction term with the new method of machine learning that is deep neural network. And it uses the method to extract terms from the real and effective corpus for experiments. Compared with methods based solely on language rules, language rules & statistical calculation, this method can improve the accuracy rate by about 47% and 8% respectively. This method gets some new terms that are not contained in the thesaurus. It verifies the effectiveness of machine learning in term extraction." @default.
- W2890167756 created "2018-09-27" @default.
- W2890167756 creator A5042875971 @default.
- W2890167756 creator A5048350283 @default.
- W2890167756 creator A5064149604 @default.
- W2890167756 date "2018-01-01" @default.
- W2890167756 modified "2023-09-24" @default.
- W2890167756 title "Study on Chinese Term Extraction Method Based on Machine Learning" @default.
- W2890167756 cites W1908119927 @default.
- W2890167756 cites W1995905884 @default.
- W2890167756 cites W2015861736 @default.
- W2890167756 cites W2049107599 @default.
- W2890167756 cites W2293419139 @default.
- W2890167756 cites W2298645392 @default.
- W2890167756 cites W2729766623 @default.
- W2890167756 cites W2919115771 @default.
- W2890167756 doi "https://doi.org/10.1007/978-981-13-2206-8_12" @default.
- W2890167756 hasPublicationYear "2018" @default.
- W2890167756 type Work @default.
- W2890167756 sameAs 2890167756 @default.
- W2890167756 citedByCount "1" @default.
- W2890167756 countsByYear W28901677562021 @default.
- W2890167756 crossrefType "book-chapter" @default.
- W2890167756 hasAuthorship W2890167756A5042875971 @default.
- W2890167756 hasAuthorship W2890167756A5048350283 @default.
- W2890167756 hasAuthorship W2890167756A5064149604 @default.
- W2890167756 hasConcept C119857082 @default.
- W2890167756 hasConcept C121332964 @default.
- W2890167756 hasConcept C132964779 @default.
- W2890167756 hasConcept C154945302 @default.
- W2890167756 hasConcept C185592680 @default.
- W2890167756 hasConcept C195807954 @default.
- W2890167756 hasConcept C199360897 @default.
- W2890167756 hasConcept C204321447 @default.
- W2890167756 hasConcept C2778698081 @default.
- W2890167756 hasConcept C41008148 @default.
- W2890167756 hasConcept C43617362 @default.
- W2890167756 hasConcept C4725764 @default.
- W2890167756 hasConcept C50644808 @default.
- W2890167756 hasConcept C61797465 @default.
- W2890167756 hasConcept C62520636 @default.
- W2890167756 hasConceptScore W2890167756C119857082 @default.
- W2890167756 hasConceptScore W2890167756C121332964 @default.
- W2890167756 hasConceptScore W2890167756C132964779 @default.
- W2890167756 hasConceptScore W2890167756C154945302 @default.
- W2890167756 hasConceptScore W2890167756C185592680 @default.
- W2890167756 hasConceptScore W2890167756C195807954 @default.
- W2890167756 hasConceptScore W2890167756C199360897 @default.
- W2890167756 hasConceptScore W2890167756C204321447 @default.
- W2890167756 hasConceptScore W2890167756C2778698081 @default.
- W2890167756 hasConceptScore W2890167756C41008148 @default.
- W2890167756 hasConceptScore W2890167756C43617362 @default.
- W2890167756 hasConceptScore W2890167756C4725764 @default.
- W2890167756 hasConceptScore W2890167756C50644808 @default.
- W2890167756 hasConceptScore W2890167756C61797465 @default.
- W2890167756 hasConceptScore W2890167756C62520636 @default.
- W2890167756 hasLocation W28901677561 @default.
- W2890167756 hasOpenAccess W2890167756 @default.
- W2890167756 hasPrimaryLocation W28901677561 @default.
- W2890167756 hasRelatedWork W1507353491 @default.
- W2890167756 hasRelatedWork W1641896947 @default.
- W2890167756 hasRelatedWork W2095183816 @default.
- W2890167756 hasRelatedWork W2137689384 @default.
- W2890167756 hasRelatedWork W2339204188 @default.
- W2890167756 hasRelatedWork W2584369963 @default.
- W2890167756 hasRelatedWork W2784910758 @default.
- W2890167756 hasRelatedWork W2786559064 @default.
- W2890167756 hasRelatedWork W2889146846 @default.
- W2890167756 hasRelatedWork W2907145038 @default.
- W2890167756 hasRelatedWork W2909372869 @default.
- W2890167756 hasRelatedWork W2914546539 @default.
- W2890167756 hasRelatedWork W2946423414 @default.
- W2890167756 hasRelatedWork W2970650542 @default.
- W2890167756 hasRelatedWork W2992548114 @default.
- W2890167756 hasRelatedWork W3005908064 @default.
- W2890167756 hasRelatedWork W3016514588 @default.
- W2890167756 hasRelatedWork W3017753744 @default.
- W2890167756 hasRelatedWork W3154137177 @default.
- W2890167756 hasRelatedWork W3161445942 @default.
- W2890167756 isParatext "false" @default.
- W2890167756 isRetracted "false" @default.
- W2890167756 magId "2890167756" @default.
- W2890167756 workType "book-chapter" @default.