Matches in SemOpenAlex for { <https://semopenalex.org/work/W2890168959> ?p ?o ?g. }
- W2890168959 endingPage "46" @default.
- W2890168959 startingPage "39" @default.
- W2890168959 abstract "Overwork-related disorders, such as cerebrovascular/cardiovascular diseases (CCVD) and mental disorders due to overwork, are a major occupational and public health issue worldwide, particularly in East Asian countries. Since wearable smart devices are inexpensive, convenient, popular and widely available today, we were interested in investigating the possibility of using wearable smart electrocardiogram (ECG) devices to detect the mental fatigue state. In total, 35 healthy participants were recruited from a public university in East China. Throughout the entire experiment, each participant wore a wearable device that was further linked to a smartphone to upload the data based on Bluetooth transmission. To manipulate the fatigue state, each participant was asked to finish a quiz, which lasted for approximately 80 min, with 30 logical referential and computing problems and 25 memory tests. Eight heart rate variability (HRV) indicators namely NN.mean (mean of normal to normal interval), rMSSD (root mean square of successive differences), PNN50 (the proportion of NN50 divided by total number of NNs), TP (total spectral power), HF (high frequency from 0.15 Hz to 0.4 Hz), LF (low frequency from 0.04 Hz to 0.15 Hz), VLF (very low frequency from 0.0033 Hz to 0.04 Hz) and the LF/HF ratio were collected at intervals of 5 min throughout the entire experiment. After the feature selection was performed, six indicators remained for further analysis, which were the NN.mean, rMSSD, PNN50, TP, LF, and VLF. Four algorithms, support vector machine (SVM), K-nearest neighbor (KNN), naïve Bayes (NB), and logistic regression (LR), were used to build classifiers that automatically detected the fatigue state. The best performance was achieved by KNN, which had a CV accuracy of 75.5%. The NN.mean, PNN50, TP and LF were the most important HRV indicators for mental fatigue detection. KNN performed the best among the four algorithms and had an average CV accuracy of 65.37% for all of the possible feature combinations." @default.
- W2890168959 created "2018-09-27" @default.
- W2890168959 creator A5008334200 @default.
- W2890168959 creator A5035994317 @default.
- W2890168959 creator A5044702629 @default.
- W2890168959 creator A5045543880 @default.
- W2890168959 date "2018-11-01" @default.
- W2890168959 modified "2023-10-16" @default.
- W2890168959 title "Detection of mental fatigue state with wearable ECG devices" @default.
- W2890168959 cites W197066864 @default.
- W2890168959 cites W1973944863 @default.
- W2890168959 cites W1974687042 @default.
- W2890168959 cites W1983515257 @default.
- W2890168959 cites W1991414942 @default.
- W2890168959 cites W2002080919 @default.
- W2890168959 cites W2002716918 @default.
- W2890168959 cites W2013926069 @default.
- W2890168959 cites W2015516923 @default.
- W2890168959 cites W2043133488 @default.
- W2890168959 cites W2043885354 @default.
- W2890168959 cites W2061442002 @default.
- W2890168959 cites W2061677720 @default.
- W2890168959 cites W2065105236 @default.
- W2890168959 cites W2067094516 @default.
- W2890168959 cites W2070017268 @default.
- W2890168959 cites W2071878275 @default.
- W2890168959 cites W2072850120 @default.
- W2890168959 cites W2078756332 @default.
- W2890168959 cites W2080426890 @default.
- W2890168959 cites W2106209055 @default.
- W2890168959 cites W2107538614 @default.
- W2890168959 cites W2112802342 @default.
- W2890168959 cites W2116402586 @default.
- W2890168959 cites W2133910360 @default.
- W2890168959 cites W2144589738 @default.
- W2890168959 cites W2149763385 @default.
- W2890168959 cites W2158366285 @default.
- W2890168959 cites W2161654128 @default.
- W2890168959 cites W2174040329 @default.
- W2890168959 cites W2197775919 @default.
- W2890168959 cites W2328556059 @default.
- W2890168959 cites W2581678319 @default.
- W2890168959 cites W1589206297 @default.
- W2890168959 doi "https://doi.org/10.1016/j.ijmedinf.2018.08.010" @default.
- W2890168959 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/30342684" @default.
- W2890168959 hasPublicationYear "2018" @default.
- W2890168959 type Work @default.
- W2890168959 sameAs 2890168959 @default.
- W2890168959 citedByCount "86" @default.
- W2890168959 countsByYear W28901689592018 @default.
- W2890168959 countsByYear W28901689592019 @default.
- W2890168959 countsByYear W28901689592020 @default.
- W2890168959 countsByYear W28901689592021 @default.
- W2890168959 countsByYear W28901689592022 @default.
- W2890168959 countsByYear W28901689592023 @default.
- W2890168959 crossrefType "journal-article" @default.
- W2890168959 hasAuthorship W2890168959A5008334200 @default.
- W2890168959 hasAuthorship W2890168959A5035994317 @default.
- W2890168959 hasAuthorship W2890168959A5044702629 @default.
- W2890168959 hasAuthorship W2890168959A5045543880 @default.
- W2890168959 hasConcept C118552586 @default.
- W2890168959 hasConcept C12267149 @default.
- W2890168959 hasConcept C126322002 @default.
- W2890168959 hasConcept C134362201 @default.
- W2890168959 hasConcept C149635348 @default.
- W2890168959 hasConcept C150594956 @default.
- W2890168959 hasConcept C154945302 @default.
- W2890168959 hasConcept C2777953023 @default.
- W2890168959 hasConcept C28490314 @default.
- W2890168959 hasConcept C41008148 @default.
- W2890168959 hasConcept C52001869 @default.
- W2890168959 hasConcept C54290928 @default.
- W2890168959 hasConcept C71635504 @default.
- W2890168959 hasConcept C71924100 @default.
- W2890168959 hasConcept C84393581 @default.
- W2890168959 hasConceptScore W2890168959C118552586 @default.
- W2890168959 hasConceptScore W2890168959C12267149 @default.
- W2890168959 hasConceptScore W2890168959C126322002 @default.
- W2890168959 hasConceptScore W2890168959C134362201 @default.
- W2890168959 hasConceptScore W2890168959C149635348 @default.
- W2890168959 hasConceptScore W2890168959C150594956 @default.
- W2890168959 hasConceptScore W2890168959C154945302 @default.
- W2890168959 hasConceptScore W2890168959C2777953023 @default.
- W2890168959 hasConceptScore W2890168959C28490314 @default.
- W2890168959 hasConceptScore W2890168959C41008148 @default.
- W2890168959 hasConceptScore W2890168959C52001869 @default.
- W2890168959 hasConceptScore W2890168959C54290928 @default.
- W2890168959 hasConceptScore W2890168959C71635504 @default.
- W2890168959 hasConceptScore W2890168959C71924100 @default.
- W2890168959 hasConceptScore W2890168959C84393581 @default.
- W2890168959 hasFunder F4320321001 @default.
- W2890168959 hasLocation W28901689591 @default.
- W2890168959 hasLocation W28901689592 @default.
- W2890168959 hasOpenAccess W2890168959 @default.
- W2890168959 hasPrimaryLocation W28901689591 @default.
- W2890168959 hasRelatedWork W2084024522 @default.
- W2890168959 hasRelatedWork W2748952813 @default.
- W2890168959 hasRelatedWork W2801709500 @default.