Matches in SemOpenAlex for { <https://semopenalex.org/work/W2890177404> ?p ?o ?g. }
Showing items 1 to 81 of
81
with 100 items per page.
- W2890177404 abstract "Author(s): Fortmann-Roe, Scott | Advisor(s): Getz, Wayne | Abstract: Predictive accuracy of a model is of key importance in research and to a lay audience. Diverse modeling methods and parameter estimation methods exist, such that a wide range of techniques are available from which to select when approaching a modeling task. Given this, two questions naturally arise in relation to a modeling task: model selection and model parameter estimation. This dissertation is intended to advance the theory and practice of model selection and parameter estimation for the topics discussed here. * In Chapter 2, I develop A3, a novel method for assessing predictive accuracy and enabling direct comparisons between competing models in an accessible framework. This method uses resampling techniques to wrap predictive modeling methods and estimate a standard set of error metrics for both the model as a whole and additionally for each explanatory variable utilized by the model. Two case studies in the chapter illustrate the applied utility of the method and how improved models may not only result in increased predictive accuracy, but also potentially alter inferences and conclusions about the effects of parameters in the model. An R package implementing the method is made available on CRAN.* In Chapter 3, I develop ICE, a novel method of home range estimation. ICE uses a competitive method for estimating home ranges. Effectively, an estimator of estimators, ICE pits existing home range estimators against each other, each of which may be best suited for a given type of data. By selecting between different approaches, ICE can theoretically improve on the performance of any individual estimator across heterogeneous sets.* In Chapter 4, I develop Contingent Kernel Density Estimation, an extension to Kernel Density Estimation designed to account for the case when observations are measured with a specific form of error. Chapter 4 develops the method and derives contingent kernels for commonly-used kernels and sampling regimes. An application of the method is presented to collected from the social networking site, Twitter, to estimate the national distribution of a sample of Twitter users.* The study in Chapter 5 analyzes a large set collected from Twitter. This study is based on from over four million Twitter users and estimates parameters of this population with a primary focus on color preference choices made by these users. Novel results are found in this big data analysis approach that may not have been able to be identified with earlier, traditional approaches of sampling and surveying the behavior of individuals." @default.
- W2890177404 created "2018-09-27" @default.
- W2890177404 creator A5027926582 @default.
- W2890177404 date "2014-01-01" @default.
- W2890177404 modified "2023-09-26" @default.
- W2890177404 title "Methods for Comparative Model Selection and Parameter Estimation in Diverse Modeling Applications" @default.
- W2890177404 hasPublicationYear "2014" @default.
- W2890177404 type Work @default.
- W2890177404 sameAs 2890177404 @default.
- W2890177404 citedByCount "0" @default.
- W2890177404 crossrefType "journal-article" @default.
- W2890177404 hasAuthorship W2890177404A5027926582 @default.
- W2890177404 hasConcept C105795698 @default.
- W2890177404 hasConcept C11413529 @default.
- W2890177404 hasConcept C119857082 @default.
- W2890177404 hasConcept C124101348 @default.
- W2890177404 hasConcept C127413603 @default.
- W2890177404 hasConcept C146978453 @default.
- W2890177404 hasConcept C150921843 @default.
- W2890177404 hasConcept C154945302 @default.
- W2890177404 hasConcept C167928553 @default.
- W2890177404 hasConcept C177264268 @default.
- W2890177404 hasConcept C185429906 @default.
- W2890177404 hasConcept C199360897 @default.
- W2890177404 hasConcept C201995342 @default.
- W2890177404 hasConcept C204323151 @default.
- W2890177404 hasConcept C25343380 @default.
- W2890177404 hasConcept C2780451532 @default.
- W2890177404 hasConcept C33923547 @default.
- W2890177404 hasConcept C41008148 @default.
- W2890177404 hasConcept C81917197 @default.
- W2890177404 hasConcept C93959086 @default.
- W2890177404 hasConcept C96250715 @default.
- W2890177404 hasConceptScore W2890177404C105795698 @default.
- W2890177404 hasConceptScore W2890177404C11413529 @default.
- W2890177404 hasConceptScore W2890177404C119857082 @default.
- W2890177404 hasConceptScore W2890177404C124101348 @default.
- W2890177404 hasConceptScore W2890177404C127413603 @default.
- W2890177404 hasConceptScore W2890177404C146978453 @default.
- W2890177404 hasConceptScore W2890177404C150921843 @default.
- W2890177404 hasConceptScore W2890177404C154945302 @default.
- W2890177404 hasConceptScore W2890177404C167928553 @default.
- W2890177404 hasConceptScore W2890177404C177264268 @default.
- W2890177404 hasConceptScore W2890177404C185429906 @default.
- W2890177404 hasConceptScore W2890177404C199360897 @default.
- W2890177404 hasConceptScore W2890177404C201995342 @default.
- W2890177404 hasConceptScore W2890177404C204323151 @default.
- W2890177404 hasConceptScore W2890177404C25343380 @default.
- W2890177404 hasConceptScore W2890177404C2780451532 @default.
- W2890177404 hasConceptScore W2890177404C33923547 @default.
- W2890177404 hasConceptScore W2890177404C41008148 @default.
- W2890177404 hasConceptScore W2890177404C81917197 @default.
- W2890177404 hasConceptScore W2890177404C93959086 @default.
- W2890177404 hasConceptScore W2890177404C96250715 @default.
- W2890177404 hasLocation W28901774041 @default.
- W2890177404 hasOpenAccess W2890177404 @default.
- W2890177404 hasPrimaryLocation W28901774041 @default.
- W2890177404 hasRelatedWork W1694469806 @default.
- W2890177404 hasRelatedWork W2181608889 @default.
- W2890177404 hasRelatedWork W2207304864 @default.
- W2890177404 hasRelatedWork W2207780529 @default.
- W2890177404 hasRelatedWork W2492411418 @default.
- W2890177404 hasRelatedWork W2558572443 @default.
- W2890177404 hasRelatedWork W2605489464 @default.
- W2890177404 hasRelatedWork W2724547872 @default.
- W2890177404 hasRelatedWork W2894857228 @default.
- W2890177404 hasRelatedWork W2925920795 @default.
- W2890177404 hasRelatedWork W2967215058 @default.
- W2890177404 hasRelatedWork W2989858283 @default.
- W2890177404 hasRelatedWork W2997897824 @default.
- W2890177404 hasRelatedWork W3048419302 @default.
- W2890177404 hasRelatedWork W3085280887 @default.
- W2890177404 hasRelatedWork W3106344352 @default.
- W2890177404 hasRelatedWork W3121931183 @default.
- W2890177404 hasRelatedWork W803978031 @default.
- W2890177404 hasRelatedWork W99441647 @default.
- W2890177404 hasRelatedWork W2113533029 @default.
- W2890177404 isParatext "false" @default.
- W2890177404 isRetracted "false" @default.
- W2890177404 magId "2890177404" @default.
- W2890177404 workType "article" @default.