Matches in SemOpenAlex for { <https://semopenalex.org/work/W2890179316> ?p ?o ?g. }
- W2890179316 endingPage "160" @default.
- W2890179316 startingPage "140" @default.
- W2890179316 abstract "Spherical deconvolution methods are widely used to estimate the brain's white-matter fiber orientations from diffusion MRI data. In this study, eight spherical deconvolution algorithms were implemented and evaluated. These included two model selection techniques based on the extended Bayesian information criterion (i.e., best subset selection and the least absolute shrinkage and selection operator), iteratively reweighted l2- and l1-norm approaches to approximate the l0-norm, sparse Bayesian learning, Cauchy deconvolution, and two accelerated Richardson-Lucy algorithms. Results from our exhaustive evaluation show that there is no single optimal method for all different fiber configurations, suggesting that further studies should be conducted to find the optimal way of combining solutions from different methods. We found l0-norm regularization algorithms to resolve more accurately fiber crossings with small inter-fiber angles. However, in voxels with very dominant fibers, algorithms promoting more sparsity are less accurate in detecting smaller fibers. In most cases, the best algorithm to reconstruct fiber crossings with two fibers did not perform optimally in voxels with one or three fibers. Therefore, simplified validation systems as employed in a number of previous studies, where only two fibers with similar volume fractions were tested, should be avoided as they provide incomplete information. Future studies proposing new reconstruction methods based on high angular resolution diffusion imaging data should validate their results by considering, at least, voxels with one, two, and three fibers, as well as voxels with dominant fibers and different diffusion anisotropies." @default.
- W2890179316 created "2018-09-27" @default.
- W2890179316 creator A5000864953 @default.
- W2890179316 creator A5001122545 @default.
- W2890179316 creator A5013850648 @default.
- W2890179316 creator A5029635086 @default.
- W2890179316 creator A5034103150 @default.
- W2890179316 creator A5035526407 @default.
- W2890179316 creator A5044175398 @default.
- W2890179316 creator A5062786191 @default.
- W2890179316 creator A5063190183 @default.
- W2890179316 creator A5067782007 @default.
- W2890179316 creator A5073621737 @default.
- W2890179316 creator A5079180864 @default.
- W2890179316 creator A5084501525 @default.
- W2890179316 creator A5088609350 @default.
- W2890179316 date "2019-01-01" @default.
- W2890179316 modified "2023-10-18" @default.
- W2890179316 title "Sparse wars: A survey and comparative study of spherical deconvolution algorithms for diffusion MRI" @default.
- W2890179316 cites W1536052010 @default.
- W2890179316 cites W1823166105 @default.
- W2890179316 cites W1938398182 @default.
- W2890179316 cites W1965894642 @default.
- W2890179316 cites W1971638481 @default.
- W2890179316 cites W1974578052 @default.
- W2890179316 cites W1976709621 @default.
- W2890179316 cites W1978181502 @default.
- W2890179316 cites W1981176642 @default.
- W2890179316 cites W1988954604 @default.
- W2890179316 cites W1995691260 @default.
- W2890179316 cites W1996807743 @default.
- W2890179316 cites W2000133863 @default.
- W2890179316 cites W2001611992 @default.
- W2890179316 cites W2001617943 @default.
- W2890179316 cites W2002842671 @default.
- W2890179316 cites W2011015491 @default.
- W2890179316 cites W2015251708 @default.
- W2890179316 cites W2019737946 @default.
- W2890179316 cites W2020925091 @default.
- W2890179316 cites W2021228864 @default.
- W2890179316 cites W2030235290 @default.
- W2890179316 cites W2031345090 @default.
- W2890179316 cites W2034252184 @default.
- W2890179316 cites W2041945552 @default.
- W2890179316 cites W2046699283 @default.
- W2890179316 cites W2053061982 @default.
- W2890179316 cites W2063978378 @default.
- W2890179316 cites W2080198834 @default.
- W2890179316 cites W2089967541 @default.
- W2890179316 cites W2091910928 @default.
- W2890179316 cites W2100556411 @default.
- W2890179316 cites W2104680226 @default.
- W2890179316 cites W2107861471 @default.
- W2890179316 cites W2108895118 @default.
- W2890179316 cites W2109018200 @default.
- W2890179316 cites W2112111016 @default.
- W2890179316 cites W2116366076 @default.
- W2890179316 cites W2118297240 @default.
- W2890179316 cites W2119862467 @default.
- W2890179316 cites W2119883478 @default.
- W2890179316 cites W2120895215 @default.
- W2890179316 cites W2122315118 @default.
- W2890179316 cites W2127447444 @default.
- W2890179316 cites W2130187411 @default.
- W2890179316 cites W2131298599 @default.
- W2890179316 cites W2137679584 @default.
- W2890179316 cites W2138836107 @default.
- W2890179316 cites W2142059961 @default.
- W2890179316 cites W2143504795 @default.
- W2890179316 cites W2145096794 @default.
- W2890179316 cites W2146000945 @default.
- W2890179316 cites W2148154358 @default.
- W2890179316 cites W2151111032 @default.
- W2890179316 cites W2154524479 @default.
- W2890179316 cites W2161765392 @default.
- W2890179316 cites W2165679282 @default.
- W2890179316 cites W2166221887 @default.
- W2890179316 cites W2167644773 @default.
- W2890179316 cites W2170680762 @default.
- W2890179316 cites W2172084009 @default.
- W2890179316 cites W2312839476 @default.
- W2890179316 cites W2404527239 @default.
- W2890179316 cites W2593438165 @default.
- W2890179316 cites W2766639217 @default.
- W2890179316 cites W2801961936 @default.
- W2890179316 cites W3101718821 @default.
- W2890179316 cites W4206310440 @default.
- W2890179316 cites W4250955649 @default.
- W2890179316 cites W590635534 @default.
- W2890179316 cites W1982021437 @default.
- W2890179316 doi "https://doi.org/10.1016/j.neuroimage.2018.08.071" @default.
- W2890179316 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/30193974" @default.
- W2890179316 hasPublicationYear "2019" @default.
- W2890179316 type Work @default.
- W2890179316 sameAs 2890179316 @default.
- W2890179316 citedByCount "29" @default.
- W2890179316 countsByYear W28901793162019 @default.
- W2890179316 countsByYear W28901793162020 @default.