Matches in SemOpenAlex for { <https://semopenalex.org/work/W2890179326> ?p ?o ?g. }
- W2890179326 endingPage "2955" @default.
- W2890179326 startingPage "2955" @default.
- W2890179326 abstract "Preliminaries convolutional neural network (CNN) applications have recently emerged in structural health monitoring (SHM) systems focusing mostly on vibration analysis. However, the SHM literature shows clearly that there is a lack of application regarding the combination of PZT-(lead zirconate titanate) based method and CNN. Likewise, applications using CNN along with the electromechanical impedance (EMI) technique applied to SHM systems are rare. To encourage this combination, an innovative SHM solution through the combination of the EMI-PZT and CNN is presented here. To accomplish this, the EMI signature is split into several parts followed by computing the Euclidean distances among them to form a RGB (red, green and blue) frame. As a result, we introduce a dataset formed from the EMI-PZT signals of 720 frames, encompassing a total of four types of structural conditions for each PZT. In a case study, the CNN-based method was experimentally evaluated using three PZTs glued onto an aluminum plate. The results reveal an effective pattern classification; yielding a 100% hit rate which outperforms other SHM approaches. Furthermore, the method needs only a small dataset for training the CNN, providing several advantages for industrial applications." @default.
- W2890179326 created "2018-09-27" @default.
- W2890179326 creator A5030045570 @default.
- W2890179326 creator A5062420173 @default.
- W2890179326 creator A5084591022 @default.
- W2890179326 date "2018-09-05" @default.
- W2890179326 modified "2023-10-01" @default.
- W2890179326 title "A New Structural Health Monitoring Strategy Based on PZT Sensors and Convolutional Neural Network" @default.
- W2890179326 cites W1893072774 @default.
- W2890179326 cites W1964487821 @default.
- W2890179326 cites W1972388228 @default.
- W2890179326 cites W1973638658 @default.
- W2890179326 cites W1980588702 @default.
- W2890179326 cites W1985110503 @default.
- W2890179326 cites W1987983067 @default.
- W2890179326 cites W2007847370 @default.
- W2890179326 cites W2014065015 @default.
- W2890179326 cites W2017325890 @default.
- W2890179326 cites W2017713683 @default.
- W2890179326 cites W2018852350 @default.
- W2890179326 cites W2027456229 @default.
- W2890179326 cites W2046978589 @default.
- W2890179326 cites W2047964226 @default.
- W2890179326 cites W2050909855 @default.
- W2890179326 cites W2060866052 @default.
- W2890179326 cites W2066553568 @default.
- W2890179326 cites W2074737208 @default.
- W2890179326 cites W2076063813 @default.
- W2890179326 cites W2078281744 @default.
- W2890179326 cites W2082904590 @default.
- W2890179326 cites W2096213078 @default.
- W2890179326 cites W2112796928 @default.
- W2890179326 cites W2114051039 @default.
- W2890179326 cites W2117731089 @default.
- W2890179326 cites W2133152047 @default.
- W2890179326 cites W2142116925 @default.
- W2890179326 cites W2144942385 @default.
- W2890179326 cites W2147800946 @default.
- W2890179326 cites W2214022857 @default.
- W2890179326 cites W2256545594 @default.
- W2890179326 cites W2404692435 @default.
- W2890179326 cites W2406123037 @default.
- W2890179326 cites W2461729787 @default.
- W2890179326 cites W2468874853 @default.
- W2890179326 cites W2485614840 @default.
- W2890179326 cites W2509733176 @default.
- W2890179326 cites W2553788023 @default.
- W2890179326 cites W2556345765 @default.
- W2890179326 cites W2562219162 @default.
- W2890179326 cites W2684054249 @default.
- W2890179326 cites W2731461611 @default.
- W2890179326 cites W2732126315 @default.
- W2890179326 cites W2734669076 @default.
- W2890179326 cites W2742236569 @default.
- W2890179326 cites W2744790985 @default.
- W2890179326 cites W2756789966 @default.
- W2890179326 cites W2758927034 @default.
- W2890179326 cites W2765284480 @default.
- W2890179326 cites W2765854388 @default.
- W2890179326 cites W2767375627 @default.
- W2890179326 cites W2782623557 @default.
- W2890179326 cites W2791965385 @default.
- W2890179326 cites W2794433482 @default.
- W2890179326 cites W2962949934 @default.
- W2890179326 cites W4252262371 @default.
- W2890179326 doi "https://doi.org/10.3390/s18092955" @default.
- W2890179326 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/6163936" @default.
- W2890179326 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/30189639" @default.
- W2890179326 hasPublicationYear "2018" @default.
- W2890179326 type Work @default.
- W2890179326 sameAs 2890179326 @default.
- W2890179326 citedByCount "89" @default.
- W2890179326 countsByYear W28901793262018 @default.
- W2890179326 countsByYear W28901793262019 @default.
- W2890179326 countsByYear W28901793262020 @default.
- W2890179326 countsByYear W28901793262021 @default.
- W2890179326 countsByYear W28901793262022 @default.
- W2890179326 countsByYear W28901793262023 @default.
- W2890179326 crossrefType "journal-article" @default.
- W2890179326 hasAuthorship W2890179326A5030045570 @default.
- W2890179326 hasAuthorship W2890179326A5062420173 @default.
- W2890179326 hasAuthorship W2890179326A5084591022 @default.
- W2890179326 hasBestOaLocation W28901793261 @default.
- W2890179326 hasConcept C108583219 @default.
- W2890179326 hasConcept C119599485 @default.
- W2890179326 hasConcept C127413603 @default.
- W2890179326 hasConcept C153180895 @default.
- W2890179326 hasConcept C154945302 @default.
- W2890179326 hasConcept C184892835 @default.
- W2890179326 hasConcept C24326235 @default.
- W2890179326 hasConcept C2776247918 @default.
- W2890179326 hasConcept C41008148 @default.
- W2890179326 hasConcept C43461449 @default.
- W2890179326 hasConcept C76155785 @default.
- W2890179326 hasConcept C81363708 @default.
- W2890179326 hasConceptScore W2890179326C108583219 @default.
- W2890179326 hasConceptScore W2890179326C119599485 @default.
- W2890179326 hasConceptScore W2890179326C127413603 @default.