Matches in SemOpenAlex for { <https://semopenalex.org/work/W2890189655> ?p ?o ?g. }
- W2890189655 endingPage "1794" @default.
- W2890189655 startingPage "1787" @default.
- W2890189655 abstract "Abstract BACKGROUND The instrumental evaluation of tea quality using digital sensors instead of human panel tests has attracted much attention globally. However, individual sensors do not meet the requirements of discriminant accuracy as a result of incomprehensive sensor information. Considering the major factors in the sensory evaluation of tea, the study integrated multisensor information, including spectral, image and olfaction feature information. RESULTS To investigate spectral and image information obtained from hyperspectral spectrometers of different bands, principal components analysis was used for dimension reduction and different types of supervised learning algorithms (linear discriminant analysis, K ‐nearest neighbour and support vector machine) were selected for comparison. Spectral feature information in the near infrared region and image feature information in the visible‐near infrared/near infrared region achieved greater accuracy for classification. The results indicated that a support vector machine outperformed other methods with respect to multisensor data fusion, which improved the accuracy of evaluating green tea quality compared to using individual sensor data. The overall accuracy of the calibration set increased from 75% using optimal single sensor information to 92% using multisensor information, and the overall accuracy of the prediction set increased from 78% to 92%. CONCLUSION Overall, it can be concluded that multisensory data accurately identify six grades of tea. © 2018 Society of Chemical Industry" @default.
- W2890189655 created "2018-09-27" @default.
- W2890189655 creator A5001624428 @default.
- W2890189655 creator A5017939712 @default.
- W2890189655 creator A5048649504 @default.
- W2890189655 creator A5074910875 @default.
- W2890189655 creator A5076366428 @default.
- W2890189655 date "2018-10-30" @default.
- W2890189655 modified "2023-10-11" @default.
- W2890189655 title "Evaluating green tea quality based on multisensor data fusion combining hyperspectral imaging and olfactory visualization systems" @default.
- W2890189655 cites W1974097586 @default.
- W2890189655 cites W1991360699 @default.
- W2890189655 cites W1993955653 @default.
- W2890189655 cites W2006217886 @default.
- W2890189655 cites W2008421044 @default.
- W2890189655 cites W2015415108 @default.
- W2890189655 cites W2020174995 @default.
- W2890189655 cites W2026885423 @default.
- W2890189655 cites W2027955884 @default.
- W2890189655 cites W2038409279 @default.
- W2890189655 cites W2038420319 @default.
- W2890189655 cites W2048976066 @default.
- W2890189655 cites W2062385034 @default.
- W2890189655 cites W2068377097 @default.
- W2890189655 cites W2077575348 @default.
- W2890189655 cites W2077903554 @default.
- W2890189655 cites W2088821791 @default.
- W2890189655 cites W2092822777 @default.
- W2890189655 cites W2096483002 @default.
- W2890189655 cites W2158548804 @default.
- W2890189655 cites W2164666145 @default.
- W2890189655 cites W2171347282 @default.
- W2890189655 cites W2313929077 @default.
- W2890189655 cites W2470013086 @default.
- W2890189655 cites W2492717203 @default.
- W2890189655 cites W2500440716 @default.
- W2890189655 cites W2507492412 @default.
- W2890189655 cites W2781684738 @default.
- W2890189655 cites W2790450162 @default.
- W2890189655 cites W2793970677 @default.
- W2890189655 doi "https://doi.org/10.1002/jsfa.9371" @default.
- W2890189655 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/30226640" @default.
- W2890189655 hasPublicationYear "2018" @default.
- W2890189655 type Work @default.
- W2890189655 sameAs 2890189655 @default.
- W2890189655 citedByCount "80" @default.
- W2890189655 countsByYear W28901896552019 @default.
- W2890189655 countsByYear W28901896552020 @default.
- W2890189655 countsByYear W28901896552021 @default.
- W2890189655 countsByYear W28901896552022 @default.
- W2890189655 countsByYear W28901896552023 @default.
- W2890189655 crossrefType "journal-article" @default.
- W2890189655 hasAuthorship W2890189655A5001624428 @default.
- W2890189655 hasAuthorship W2890189655A5017939712 @default.
- W2890189655 hasAuthorship W2890189655A5048649504 @default.
- W2890189655 hasAuthorship W2890189655A5074910875 @default.
- W2890189655 hasAuthorship W2890189655A5076366428 @default.
- W2890189655 hasConcept C12267149 @default.
- W2890189655 hasConcept C138885662 @default.
- W2890189655 hasConcept C153180895 @default.
- W2890189655 hasConcept C154945302 @default.
- W2890189655 hasConcept C159078339 @default.
- W2890189655 hasConcept C27438332 @default.
- W2890189655 hasConcept C2776401178 @default.
- W2890189655 hasConcept C31972630 @default.
- W2890189655 hasConcept C33954974 @default.
- W2890189655 hasConcept C41008148 @default.
- W2890189655 hasConcept C41895202 @default.
- W2890189655 hasConcept C52622490 @default.
- W2890189655 hasConcept C58489278 @default.
- W2890189655 hasConcept C69738355 @default.
- W2890189655 hasConcept C70518039 @default.
- W2890189655 hasConceptScore W2890189655C12267149 @default.
- W2890189655 hasConceptScore W2890189655C138885662 @default.
- W2890189655 hasConceptScore W2890189655C153180895 @default.
- W2890189655 hasConceptScore W2890189655C154945302 @default.
- W2890189655 hasConceptScore W2890189655C159078339 @default.
- W2890189655 hasConceptScore W2890189655C27438332 @default.
- W2890189655 hasConceptScore W2890189655C2776401178 @default.
- W2890189655 hasConceptScore W2890189655C31972630 @default.
- W2890189655 hasConceptScore W2890189655C33954974 @default.
- W2890189655 hasConceptScore W2890189655C41008148 @default.
- W2890189655 hasConceptScore W2890189655C41895202 @default.
- W2890189655 hasConceptScore W2890189655C52622490 @default.
- W2890189655 hasConceptScore W2890189655C58489278 @default.
- W2890189655 hasConceptScore W2890189655C69738355 @default.
- W2890189655 hasConceptScore W2890189655C70518039 @default.
- W2890189655 hasFunder F4320335777 @default.
- W2890189655 hasIssue "4" @default.
- W2890189655 hasLocation W28901896551 @default.
- W2890189655 hasLocation W28901896552 @default.
- W2890189655 hasOpenAccess W2890189655 @default.
- W2890189655 hasPrimaryLocation W28901896551 @default.
- W2890189655 hasRelatedWork W2048680804 @default.
- W2890189655 hasRelatedWork W2114217318 @default.
- W2890189655 hasRelatedWork W2169311637 @default.
- W2890189655 hasRelatedWork W2292979300 @default.
- W2890189655 hasRelatedWork W2370263288 @default.