Matches in SemOpenAlex for { <https://semopenalex.org/work/W2890204080> ?p ?o ?g. }
- W2890204080 endingPage "12206" @default.
- W2890204080 startingPage "12198" @default.
- W2890204080 abstract "Lipid profile changes in heart muscle have been previously linked to cardiac ischemia and myocardial infarction, but the spatial distribution of lipids and metabolites in ischemic heart remains to be fully investigated. We performed desorption electrospray ionization mass spectrometry imaging of hearts from in vivo myocardial infarction mouse models. In these mice, myocardial ischemia was induced by blood supply restriction via a permanent ligation of left anterior descending coronary artery. We showed that applying the machine learning algorithm of gradient boosting tree ensemble to the ambient mass spectrometry imaging data allows us to distinguish segments of infarcted myocardium from normally perfused hearts on a pixel by pixel basis. The machine learning algorithm selected 62 molecular ion peaks important for classification of each 200 μm-diameter pixel of the cardiac tissue map as normally perfused or ischemic. This approach achieved very high average accuracy (97.4%), recall (95.8%), and precision (96.8%) at a spatial resolution of ∼200 μm. In addition, we determined the chemical identity of 27 species, mostly small metabolites and lipids, selected by the algorithm as the most significant for cardiac pathology classification. This molecular signature of myocardial infarction may provide new mechanistic insights into cardiac ischemia, assist with infarct size assessment, and point toward novel therapeutic interventions." @default.
- W2890204080 created "2018-09-27" @default.
- W2890204080 creator A5007116585 @default.
- W2890204080 creator A5021362318 @default.
- W2890204080 creator A5046980513 @default.
- W2890204080 creator A5057711461 @default.
- W2890204080 creator A5066704514 @default.
- W2890204080 creator A5088116632 @default.
- W2890204080 date "2018-09-06" @default.
- W2890204080 modified "2023-10-10" @default.
- W2890204080 title "Combining Desorption Electrospray Ionization Mass Spectrometry Imaging and Machine Learning for Molecular Recognition of Myocardial Infarction" @default.
- W2890204080 cites W1447614194 @default.
- W2890204080 cites W1523050196 @default.
- W2890204080 cites W17395197 @default.
- W2890204080 cites W1800463333 @default.
- W2890204080 cites W1969703390 @default.
- W2890204080 cites W1971042695 @default.
- W2890204080 cites W1974134512 @default.
- W2890204080 cites W2003183020 @default.
- W2890204080 cites W2004370445 @default.
- W2890204080 cites W2011348557 @default.
- W2890204080 cites W2019428674 @default.
- W2890204080 cites W2027974246 @default.
- W2890204080 cites W2037105665 @default.
- W2890204080 cites W2041830158 @default.
- W2890204080 cites W2047176973 @default.
- W2890204080 cites W2050520574 @default.
- W2890204080 cites W2055118323 @default.
- W2890204080 cites W2069701412 @default.
- W2890204080 cites W2070747692 @default.
- W2890204080 cites W2072569486 @default.
- W2890204080 cites W2074823983 @default.
- W2890204080 cites W2075247874 @default.
- W2890204080 cites W2079401900 @default.
- W2890204080 cites W2080293390 @default.
- W2890204080 cites W2083332694 @default.
- W2890204080 cites W2089584013 @default.
- W2890204080 cites W2092862331 @default.
- W2890204080 cites W2094862862 @default.
- W2890204080 cites W2107137490 @default.
- W2890204080 cites W2114655998 @default.
- W2890204080 cites W2116123190 @default.
- W2890204080 cites W2116765206 @default.
- W2890204080 cites W2118142823 @default.
- W2890204080 cites W2121175486 @default.
- W2890204080 cites W2127238287 @default.
- W2890204080 cites W2130871414 @default.
- W2890204080 cites W2136759967 @default.
- W2890204080 cites W2141773121 @default.
- W2890204080 cites W2141908938 @default.
- W2890204080 cites W2144129876 @default.
- W2890204080 cites W2155698194 @default.
- W2890204080 cites W2165268571 @default.
- W2890204080 cites W2228259905 @default.
- W2890204080 cites W2329071455 @default.
- W2890204080 cites W2484545732 @default.
- W2890204080 cites W2514561022 @default.
- W2890204080 cites W2531622250 @default.
- W2890204080 cites W2555687332 @default.
- W2890204080 cites W2556821107 @default.
- W2890204080 cites W2565155642 @default.
- W2890204080 cites W2570672400 @default.
- W2890204080 cites W2580792129 @default.
- W2890204080 cites W2593183284 @default.
- W2890204080 cites W2595616705 @default.
- W2890204080 cites W2598641350 @default.
- W2890204080 cites W2611353715 @default.
- W2890204080 cites W2891763907 @default.
- W2890204080 cites W2972526743 @default.
- W2890204080 cites W3102476541 @default.
- W2890204080 cites W4362231430 @default.
- W2890204080 cites W2024731569 @default.
- W2890204080 cites W2644804608 @default.
- W2890204080 doi "https://doi.org/10.1021/acs.analchem.8b03410" @default.
- W2890204080 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/30188683" @default.
- W2890204080 hasPublicationYear "2018" @default.
- W2890204080 type Work @default.
- W2890204080 sameAs 2890204080 @default.
- W2890204080 citedByCount "20" @default.
- W2890204080 countsByYear W28902040802019 @default.
- W2890204080 countsByYear W28902040802020 @default.
- W2890204080 countsByYear W28902040802021 @default.
- W2890204080 countsByYear W28902040802022 @default.
- W2890204080 countsByYear W28902040802023 @default.
- W2890204080 crossrefType "journal-article" @default.
- W2890204080 hasAuthorship W2890204080A5007116585 @default.
- W2890204080 hasAuthorship W2890204080A5021362318 @default.
- W2890204080 hasAuthorship W2890204080A5046980513 @default.
- W2890204080 hasAuthorship W2890204080A5057711461 @default.
- W2890204080 hasAuthorship W2890204080A5066704514 @default.
- W2890204080 hasAuthorship W2890204080A5088116632 @default.
- W2890204080 hasConcept C126322002 @default.
- W2890204080 hasConcept C145148216 @default.
- W2890204080 hasConcept C153540111 @default.
- W2890204080 hasConcept C162356407 @default.
- W2890204080 hasConcept C164705383 @default.
- W2890204080 hasConcept C178790620 @default.
- W2890204080 hasConcept C185592680 @default.