Matches in SemOpenAlex for { <https://semopenalex.org/work/W2890216559> ?p ?o ?g. }
Showing items 1 to 73 of
73
with 100 items per page.
- W2890216559 endingPage "181" @default.
- W2890216559 startingPage "170" @default.
- W2890216559 abstract "Password recovery tools are needed to recover lost and forgotten passwords so as to regain access to valuable information. As the process of password recovery can be extremely compute-intensive, hardware accelerators are often needed to expedite the recovery process. This paper thus presents a high performance, energy-efficient accelerator built upon modern hybrid CPU-FPGA SoC devices. The proposed password recovery accelerator relies on the development of a set of intellectual property (IP) cores for implementing variety of encryption algorithms with vastly different characteristics and complexities. To keep the resource requirements of each IP core running on a resource-strapped FPGA to the minimum, while achieving the highest throughput possible, the most performance critical computational hash functions are mapped to the FPGA with two specific optimization techniques, namely the fixed message padding for hashing and loop transformation for deep pipelining. The proposed password recovery accelerator implements a non-blocking deep pipeline design that does not incur any data and structural hazards, which is made possible by applying a task scheduling scheme through the use of block RAMs. Synchronization between tasks that are mapped to run separately on CPU and FPGA is achieved through task reordering and a communication protocol for maximum parallelism and low overhead. The proposed design is evaluated on Xilinx XC7Z030-3 device, and it is compared much favorably with other known implementations. The proposed hardware accelerator design is found 12.5 and 3.1 times more resource-efficient than the pure FPGA-based password recovery accelerators for TrueCrypt and WPA-2, respectively. The proposed implementation also shows more than 200 percent improvement in energy efficiency over a state-of-the-art implementation on NVIDIA GTX 750 Ti GPU." @default.
- W2890216559 created "2018-09-27" @default.
- W2890216559 creator A5019516348 @default.
- W2890216559 creator A5028633765 @default.
- W2890216559 creator A5047351206 @default.
- W2890216559 date "2019-02-01" @default.
- W2890216559 modified "2023-10-05" @default.
- W2890216559 title "An Energy-Efficient Accelerator Based on Hybrid CPU-FPGA Devices for Password Recovery" @default.
- W2890216559 cites W1549671385 @default.
- W2890216559 cites W2086553822 @default.
- W2890216559 cites W2104633167 @default.
- W2890216559 cites W2121448889 @default.
- W2890216559 cites W2122610147 @default.
- W2890216559 cites W2135359429 @default.
- W2890216559 cites W2141569810 @default.
- W2890216559 cites W2149929743 @default.
- W2890216559 cites W2245856381 @default.
- W2890216559 cites W2275561544 @default.
- W2890216559 cites W2559948297 @default.
- W2890216559 cites W2566778546 @default.
- W2890216559 cites W2586185062 @default.
- W2890216559 cites W2055621644 @default.
- W2890216559 doi "https://doi.org/10.1109/tc.2018.2868191" @default.
- W2890216559 hasPublicationYear "2019" @default.
- W2890216559 type Work @default.
- W2890216559 sameAs 2890216559 @default.
- W2890216559 citedByCount "19" @default.
- W2890216559 countsByYear W28902165592019 @default.
- W2890216559 countsByYear W28902165592020 @default.
- W2890216559 countsByYear W28902165592021 @default.
- W2890216559 countsByYear W28902165592022 @default.
- W2890216559 countsByYear W28902165592023 @default.
- W2890216559 crossrefType "journal-article" @default.
- W2890216559 hasAuthorship W2890216559A5019516348 @default.
- W2890216559 hasAuthorship W2890216559A5028633765 @default.
- W2890216559 hasAuthorship W2890216559A5047351206 @default.
- W2890216559 hasConcept C109297577 @default.
- W2890216559 hasConcept C111919701 @default.
- W2890216559 hasConcept C148730421 @default.
- W2890216559 hasConcept C149635348 @default.
- W2890216559 hasConcept C2779960059 @default.
- W2890216559 hasConcept C41008148 @default.
- W2890216559 hasConcept C42935608 @default.
- W2890216559 hasConcept C9390403 @default.
- W2890216559 hasConceptScore W2890216559C109297577 @default.
- W2890216559 hasConceptScore W2890216559C111919701 @default.
- W2890216559 hasConceptScore W2890216559C148730421 @default.
- W2890216559 hasConceptScore W2890216559C149635348 @default.
- W2890216559 hasConceptScore W2890216559C2779960059 @default.
- W2890216559 hasConceptScore W2890216559C41008148 @default.
- W2890216559 hasConceptScore W2890216559C42935608 @default.
- W2890216559 hasConceptScore W2890216559C9390403 @default.
- W2890216559 hasIssue "2" @default.
- W2890216559 hasLocation W28902165591 @default.
- W2890216559 hasOpenAccess W2890216559 @default.
- W2890216559 hasPrimaryLocation W28902165591 @default.
- W2890216559 hasRelatedWork W1508811950 @default.
- W2890216559 hasRelatedWork W2282038838 @default.
- W2890216559 hasRelatedWork W2349179205 @default.
- W2890216559 hasRelatedWork W2360616487 @default.
- W2890216559 hasRelatedWork W2373066471 @default.
- W2890216559 hasRelatedWork W2789718247 @default.
- W2890216559 hasRelatedWork W3094426418 @default.
- W2890216559 hasRelatedWork W3135208276 @default.
- W2890216559 hasRelatedWork W3151483946 @default.
- W2890216559 hasRelatedWork W4386859323 @default.
- W2890216559 hasVolume "68" @default.
- W2890216559 isParatext "false" @default.
- W2890216559 isRetracted "false" @default.
- W2890216559 magId "2890216559" @default.
- W2890216559 workType "article" @default.