Matches in SemOpenAlex for { <https://semopenalex.org/work/W289021849> ?p ?o ?g. }
Showing items 1 to 95 of
95
with 100 items per page.
- W289021849 abstract "A very important topic in systems biology is developing statistical methods that automatically find causal relations in gene regulatory networks with no prior knowledge of causal connectivity. Many methods have been developed for time series data. However, discovery methods based on steady-state data are often necessary and preferable since obtaining time series data can be more expensive and/or infeasible for many biological systems. A conventional approach is causal Bayesian networks. However, estimation of Bayesian networks is ill-posed. In many cases it cannot uniquely identify the underlying causal network and only gives a large class of equivalent causal networks that cannot be distinguished between based on the data distribution. We propose a new discovery algorithm for uniquely identifying the underlying causal network of genes. To the best of our knowledge, the proposed method is the first algorithm for learning gene networks based on a fully identifiable causal model called LiNGAM. We here compare our algorithm with competing algorithms using artificially-generated data, although it is definitely better to test it based on real microarray gene expression data." @default.
- W289021849 created "2016-06-24" @default.
- W289021849 creator A5077846534 @default.
- W289021849 date "2012-08-20" @default.
- W289021849 modified "2023-09-26" @default.
- W289021849 title "Learning LiNGAM based on data with more variables than observations" @default.
- W289021849 cites W109923538 @default.
- W289021849 cites W115580465 @default.
- W289021849 cites W148781334 @default.
- W289021849 cites W1548802052 @default.
- W289021849 cites W1568999455 @default.
- W289021849 cites W1638081485 @default.
- W289021849 cites W1975062332 @default.
- W289021849 cites W2007568722 @default.
- W289021849 cites W2020925091 @default.
- W289021849 cites W2049910836 @default.
- W289021849 cites W2067957566 @default.
- W289021849 cites W2075490785 @default.
- W289021849 cites W2081275125 @default.
- W289021849 cites W2091879895 @default.
- W289021849 cites W2097360283 @default.
- W289021849 cites W2100603120 @default.
- W289021849 cites W2106927126 @default.
- W289021849 cites W2118037512 @default.
- W289021849 cites W2122342005 @default.
- W289021849 cites W2122825543 @default.
- W289021849 cites W2124101779 @default.
- W289021849 cites W2127480275 @default.
- W289021849 cites W2132507555 @default.
- W289021849 cites W2135046866 @default.
- W289021849 cites W2153073444 @default.
- W289021849 cites W2154560360 @default.
- W289021849 cites W2155573334 @default.
- W289021849 cites W2165582599 @default.
- W289021849 cites W2963358729 @default.
- W289021849 cites W3104281729 @default.
- W289021849 doi "https://doi.org/10.48550/arxiv.1208.4183" @default.
- W289021849 hasPublicationYear "2012" @default.
- W289021849 type Work @default.
- W289021849 sameAs 289021849 @default.
- W289021849 citedByCount "0" @default.
- W289021849 crossrefType "posted-content" @default.
- W289021849 hasAuthorship W289021849A5077846534 @default.
- W289021849 hasBestOaLocation W2890218491 @default.
- W289021849 hasConcept C104317684 @default.
- W289021849 hasConcept C105795698 @default.
- W289021849 hasConcept C107673813 @default.
- W289021849 hasConcept C11671645 @default.
- W289021849 hasConcept C119857082 @default.
- W289021849 hasConcept C124101348 @default.
- W289021849 hasConcept C150194340 @default.
- W289021849 hasConcept C151406439 @default.
- W289021849 hasConcept C154945302 @default.
- W289021849 hasConcept C2777212361 @default.
- W289021849 hasConcept C33724603 @default.
- W289021849 hasConcept C33923547 @default.
- W289021849 hasConcept C41008148 @default.
- W289021849 hasConcept C55493867 @default.
- W289021849 hasConcept C67339327 @default.
- W289021849 hasConcept C82142266 @default.
- W289021849 hasConcept C86803240 @default.
- W289021849 hasConceptScore W289021849C104317684 @default.
- W289021849 hasConceptScore W289021849C105795698 @default.
- W289021849 hasConceptScore W289021849C107673813 @default.
- W289021849 hasConceptScore W289021849C11671645 @default.
- W289021849 hasConceptScore W289021849C119857082 @default.
- W289021849 hasConceptScore W289021849C124101348 @default.
- W289021849 hasConceptScore W289021849C150194340 @default.
- W289021849 hasConceptScore W289021849C151406439 @default.
- W289021849 hasConceptScore W289021849C154945302 @default.
- W289021849 hasConceptScore W289021849C2777212361 @default.
- W289021849 hasConceptScore W289021849C33724603 @default.
- W289021849 hasConceptScore W289021849C33923547 @default.
- W289021849 hasConceptScore W289021849C41008148 @default.
- W289021849 hasConceptScore W289021849C55493867 @default.
- W289021849 hasConceptScore W289021849C67339327 @default.
- W289021849 hasConceptScore W289021849C82142266 @default.
- W289021849 hasConceptScore W289021849C86803240 @default.
- W289021849 hasLocation W2890218491 @default.
- W289021849 hasOpenAccess W289021849 @default.
- W289021849 hasPrimaryLocation W2890218491 @default.
- W289021849 hasRelatedWork W1985569452 @default.
- W289021849 hasRelatedWork W2012733121 @default.
- W289021849 hasRelatedWork W2023180634 @default.
- W289021849 hasRelatedWork W2060096014 @default.
- W289021849 hasRelatedWork W2112004925 @default.
- W289021849 hasRelatedWork W2140550119 @default.
- W289021849 hasRelatedWork W2149213055 @default.
- W289021849 hasRelatedWork W2169970199 @default.
- W289021849 hasRelatedWork W2595685795 @default.
- W289021849 hasRelatedWork W2902946190 @default.
- W289021849 isParatext "false" @default.
- W289021849 isRetracted "false" @default.
- W289021849 magId "289021849" @default.
- W289021849 workType "article" @default.