Matches in SemOpenAlex for { <https://semopenalex.org/work/W2890220418> ?p ?o ?g. }
Showing items 1 to 82 of
82
with 100 items per page.
- W2890220418 abstract "In this paper, we discuss how a Gromov-Hausdorff-like distance function over the space of all isometric classes of compact $C^k$-Riemannian manifolds should be defined in the aspect of the Riemannan submanifold theory, where $kgeq 1$. The most important fact in this discussion is as follows. The Hausdorff distance function between two spheres of mutually distinct radii isometrically embedded into the hypebolic space of curvature $c$ converges to zero as $cto-infty$. The key in the construction of the Gromov-Hausdorff-like distance function given in this paper is to define the distance of two $C^{k+1}$-isometric embeddings of distinct compact $C^k$-Riemannian manifolds into a higher dimensional Riemannian manifold by using the Hausdorff distance function in the tangent bundle of order $k+1$ equipped with the Sasaki metric. Furthermore, we show that the convergence of a sequence of compact Riemannian manifolds with respect to this distance function coincides with the convergence in the sense of R. S. Hamilton." @default.
- W2890220418 created "2018-09-27" @default.
- W2890220418 creator A5013889324 @default.
- W2890220418 date "2018-09-21" @default.
- W2890220418 modified "2023-09-27" @default.
- W2890220418 title "Gromov-Hausdorff-like distance function defined in the aspect of Riemannian submanifold theory" @default.
- W2890220418 cites W1483679902 @default.
- W2890220418 cites W2043328930 @default.
- W2890220418 cites W2044060118 @default.
- W2890220418 cites W2068360468 @default.
- W2890220418 cites W2333620035 @default.
- W2890220418 hasPublicationYear "2018" @default.
- W2890220418 type Work @default.
- W2890220418 sameAs 2890220418 @default.
- W2890220418 citedByCount "0" @default.
- W2890220418 crossrefType "posted-content" @default.
- W2890220418 hasAuthorship W2890220418A5013889324 @default.
- W2890220418 hasConcept C102224218 @default.
- W2890220418 hasConcept C12520029 @default.
- W2890220418 hasConcept C134306372 @default.
- W2890220418 hasConcept C14036430 @default.
- W2890220418 hasConcept C141898687 @default.
- W2890220418 hasConcept C151300846 @default.
- W2890220418 hasConcept C157157409 @default.
- W2890220418 hasConcept C181104567 @default.
- W2890220418 hasConcept C191399826 @default.
- W2890220418 hasConcept C194198291 @default.
- W2890220418 hasConcept C195065555 @default.
- W2890220418 hasConcept C202444582 @default.
- W2890220418 hasConcept C2524010 @default.
- W2890220418 hasConcept C2779593128 @default.
- W2890220418 hasConcept C33923547 @default.
- W2890220418 hasConcept C42448751 @default.
- W2890220418 hasConcept C73225184 @default.
- W2890220418 hasConcept C78458016 @default.
- W2890220418 hasConcept C86803240 @default.
- W2890220418 hasConceptScore W2890220418C102224218 @default.
- W2890220418 hasConceptScore W2890220418C12520029 @default.
- W2890220418 hasConceptScore W2890220418C134306372 @default.
- W2890220418 hasConceptScore W2890220418C14036430 @default.
- W2890220418 hasConceptScore W2890220418C141898687 @default.
- W2890220418 hasConceptScore W2890220418C151300846 @default.
- W2890220418 hasConceptScore W2890220418C157157409 @default.
- W2890220418 hasConceptScore W2890220418C181104567 @default.
- W2890220418 hasConceptScore W2890220418C191399826 @default.
- W2890220418 hasConceptScore W2890220418C194198291 @default.
- W2890220418 hasConceptScore W2890220418C195065555 @default.
- W2890220418 hasConceptScore W2890220418C202444582 @default.
- W2890220418 hasConceptScore W2890220418C2524010 @default.
- W2890220418 hasConceptScore W2890220418C2779593128 @default.
- W2890220418 hasConceptScore W2890220418C33923547 @default.
- W2890220418 hasConceptScore W2890220418C42448751 @default.
- W2890220418 hasConceptScore W2890220418C73225184 @default.
- W2890220418 hasConceptScore W2890220418C78458016 @default.
- W2890220418 hasConceptScore W2890220418C86803240 @default.
- W2890220418 hasLocation W28902204181 @default.
- W2890220418 hasOpenAccess W2890220418 @default.
- W2890220418 hasPrimaryLocation W28902204181 @default.
- W2890220418 hasRelatedWork W1542681211 @default.
- W2890220418 hasRelatedWork W1553280807 @default.
- W2890220418 hasRelatedWork W1972616956 @default.
- W2890220418 hasRelatedWork W2033866183 @default.
- W2890220418 hasRelatedWork W2067079951 @default.
- W2890220418 hasRelatedWork W2070848010 @default.
- W2890220418 hasRelatedWork W2072035298 @default.
- W2890220418 hasRelatedWork W2073422216 @default.
- W2890220418 hasRelatedWork W2205835346 @default.
- W2890220418 hasRelatedWork W2594129372 @default.
- W2890220418 hasRelatedWork W2743500578 @default.
- W2890220418 hasRelatedWork W2962846431 @default.
- W2890220418 hasRelatedWork W2963984165 @default.
- W2890220418 hasRelatedWork W2964026238 @default.
- W2890220418 hasRelatedWork W2964190052 @default.
- W2890220418 hasRelatedWork W3006123036 @default.
- W2890220418 hasRelatedWork W3045713089 @default.
- W2890220418 hasRelatedWork W3049699698 @default.
- W2890220418 hasRelatedWork W3102018965 @default.
- W2890220418 hasRelatedWork W3127139221 @default.
- W2890220418 isParatext "false" @default.
- W2890220418 isRetracted "false" @default.
- W2890220418 magId "2890220418" @default.
- W2890220418 workType "article" @default.