Matches in SemOpenAlex for { <https://semopenalex.org/work/W2890259229> ?p ?o ?g. }
- W2890259229 abstract "Time-based pricing programs for domestic electricity users have been effective in reducing peak demand and facilitating renewables integration. Nevertheless, high cost, price non-responsiveness and adverse selection may create the possible challenges. To overcome these challenges, it can be fruitful to investigate the ‘high-potential’ users, which are more responsive to price changes and apply time-based pricing to these users. Few studies have investigated how to identify which users are more price-responsive. We aim to fill this gap by comprehensively identifying the drivers of domestic users’ price responsiveness, in order to facilitate the selection of the high-potential users. We adopt a novel data-driven approach, first by a feed forward neural network model to accurately determine the baseline monthly peak consumption of individual households, followed by an integrated machine-learning variable selection methodology to identify the drivers of price responsiveness applied to Irish smart meter data from 2009-10 as part of a national Time of Use trial. This methodology substantially outperforms traditional variable selection methods by combining three advanced machine-learning techniques. Our results show that the response of energy users to price change is affected by a number of factors, ranging from demographic and dwelling characteristics, psychological factors, historical electricity consumption, to appliance ownership. In particular, historical electricity consumption, income, the number of occupants, perceived behavioural control, and adoption of specific appliances, including immersion water heater and dishwasher, are found to be significant drivers of price responsiveness. We also observe that continual price increase within a moderate range does not drive additional peak demand reduction, and that there is an intention-behaviour gap, whereby stated intention does not lead to actual peak reduction behavior. Based on our findings, we have conducted scenario analysis to demonstrate the feasibility of selecting the high potential users to achieve significant peak reduction." @default.
- W2890259229 created "2018-09-27" @default.
- W2890259229 creator A5048232137 @default.
- W2890259229 creator A5061948899 @default.
- W2890259229 creator A5090243481 @default.
- W2890259229 date "2018-08-16" @default.
- W2890259229 modified "2023-09-27" @default.
- W2890259229 title "A novel machine learning approach for identifying the drivers of domestic electricity users’ price responsiveness" @default.
- W2890259229 cites W1497188550 @default.
- W2890259229 cites W1567888612 @default.
- W2890259229 cites W159332305 @default.
- W2890259229 cites W1658261389 @default.
- W2890259229 cites W1954527334 @default.
- W2890259229 cites W1982820363 @default.
- W2890259229 cites W1984152515 @default.
- W2890259229 cites W1991901901 @default.
- W2890259229 cites W1994687127 @default.
- W2890259229 cites W2000164913 @default.
- W2890259229 cites W2006204409 @default.
- W2890259229 cites W2009397151 @default.
- W2890259229 cites W2012590891 @default.
- W2890259229 cites W2017005113 @default.
- W2890259229 cites W2018826517 @default.
- W2890259229 cites W2019765022 @default.
- W2890259229 cites W2046682591 @default.
- W2890259229 cites W2046933993 @default.
- W2890259229 cites W2047268919 @default.
- W2890259229 cites W2064759762 @default.
- W2890259229 cites W2073595019 @default.
- W2890259229 cites W2079697937 @default.
- W2890259229 cites W2086856302 @default.
- W2890259229 cites W2092317789 @default.
- W2890259229 cites W2092359734 @default.
- W2890259229 cites W2105841908 @default.
- W2890259229 cites W2108101523 @default.
- W2890259229 cites W2115985526 @default.
- W2890259229 cites W2123727888 @default.
- W2890259229 cites W2125790010 @default.
- W2890259229 cites W2125888944 @default.
- W2890259229 cites W2131353345 @default.
- W2890259229 cites W2148117781 @default.
- W2890259229 cites W2156665896 @default.
- W2890259229 cites W2160494525 @default.
- W2890259229 cites W2164198646 @default.
- W2890259229 cites W2209508536 @default.
- W2890259229 cites W2328146686 @default.
- W2890259229 cites W2334143816 @default.
- W2890259229 cites W2337060009 @default.
- W2890259229 cites W2360613746 @default.
- W2890259229 cites W2532692131 @default.
- W2890259229 cites W2746234826 @default.
- W2890259229 cites W2754252319 @default.
- W2890259229 cites W2771654166 @default.
- W2890259229 cites W2964074193 @default.
- W2890259229 cites W792060724 @default.
- W2890259229 doi "https://doi.org/10.17863/cam.27674" @default.
- W2890259229 hasPublicationYear "2018" @default.
- W2890259229 type Work @default.
- W2890259229 sameAs 2890259229 @default.
- W2890259229 citedByCount "0" @default.
- W2890259229 crossrefType "posted-content" @default.
- W2890259229 hasAuthorship W2890259229A5048232137 @default.
- W2890259229 hasAuthorship W2890259229A5061948899 @default.
- W2890259229 hasAuthorship W2890259229A5090243481 @default.
- W2890259229 hasConcept C10138342 @default.
- W2890259229 hasConcept C111368507 @default.
- W2890259229 hasConcept C119599485 @default.
- W2890259229 hasConcept C12725497 @default.
- W2890259229 hasConcept C127313418 @default.
- W2890259229 hasConcept C127413603 @default.
- W2890259229 hasConcept C134306372 @default.
- W2890259229 hasConcept C134560507 @default.
- W2890259229 hasConcept C144024400 @default.
- W2890259229 hasConcept C144133560 @default.
- W2890259229 hasConcept C146733006 @default.
- W2890259229 hasConcept C162324750 @default.
- W2890259229 hasConcept C182306322 @default.
- W2890259229 hasConcept C182365436 @default.
- W2890259229 hasConcept C206658404 @default.
- W2890259229 hasConcept C2779438525 @default.
- W2890259229 hasConcept C2779510800 @default.
- W2890259229 hasConcept C30772137 @default.
- W2890259229 hasConcept C33923547 @default.
- W2890259229 hasConcept C36289849 @default.
- W2890259229 hasConcept C41008148 @default.
- W2890259229 hasConceptScore W2890259229C10138342 @default.
- W2890259229 hasConceptScore W2890259229C111368507 @default.
- W2890259229 hasConceptScore W2890259229C119599485 @default.
- W2890259229 hasConceptScore W2890259229C12725497 @default.
- W2890259229 hasConceptScore W2890259229C127313418 @default.
- W2890259229 hasConceptScore W2890259229C127413603 @default.
- W2890259229 hasConceptScore W2890259229C134306372 @default.
- W2890259229 hasConceptScore W2890259229C134560507 @default.
- W2890259229 hasConceptScore W2890259229C144024400 @default.
- W2890259229 hasConceptScore W2890259229C144133560 @default.
- W2890259229 hasConceptScore W2890259229C146733006 @default.
- W2890259229 hasConceptScore W2890259229C162324750 @default.
- W2890259229 hasConceptScore W2890259229C182306322 @default.
- W2890259229 hasConceptScore W2890259229C182365436 @default.
- W2890259229 hasConceptScore W2890259229C206658404 @default.