Matches in SemOpenAlex for { <https://semopenalex.org/work/W2890276887> ?p ?o ?g. }
- W2890276887 endingPage "461" @default.
- W2890276887 startingPage "430" @default.
- W2890276887 abstract "This research evaluates the performance of areal interpolation coupled with dasymetric refinement to estimate different demographic attributes, namely population sub-groups based on race, age structure and urban residence, within consistent census tract boundaries from 1990 to 2010 in Massachusetts. The creation of such consistent estimates facilitates the study of the nuanced micro-scale evolution of different aspects of population, which is impossible using temporally incompatible small-area census geographies from different points in time. Various unexplored ancillary variables, including the Global Human Settlement Layer (GHSL), the National Land-Cover Database (NLCD), parcels, building footprints and the proprietary ZTRAX® dataset are utilized for dasymetric refinement prior to areal interpolation to examine their effectiveness in improving the accuracy of multi-temporal population estimates. Different areal interpolation methods including Areal Weighting (AW), Target Density Weighting (TDW), Expectation Maximization (EM) and its data-extended approach are coupled with different dasymetric refinement scenarios based on these ancillary variables. The resulting consistent small area estimates of white and black subpopulations, people of age 18–65 and urban population show that dasymetrically refined areal interpolation is particularly effective when the analysis spans a longer time period (1990–2010 instead of 2000–2010) and the enumerated population is sufficiently large (e.g., counts of white vs. black). The results also demonstrate that current census-defined urban areas overestimate the spatial distribution of urban population and dasymetrically refined areal interpolation improves estimates of urban population. Refined TDW using building footprints or the ZTRAX® dataset outperforms all other methods. The implementation of areal interpolation enriched by dasymetric refinement represents a promising strategy to create more reliable multi-temporal and consistent estimates of different population subgroups and thus demographic compositions. This methodological foundation has the potential to advance micro-scale modeling of various subpopulations, particularly urban population to inform studies of urbanization and population change over time as well as future population projections." @default.
- W2890276887 created "2018-09-27" @default.
- W2890276887 creator A5055813518 @default.
- W2890276887 creator A5087645671 @default.
- W2890276887 date "2018-09-03" @default.
- W2890276887 modified "2023-09-26" @default.
- W2890276887 title "Data-enriched interpolation for temporally consistent population compositions" @default.
- W2890276887 cites W1543116876 @default.
- W2890276887 cites W1543801710 @default.
- W2890276887 cites W1816248242 @default.
- W2890276887 cites W1957403495 @default.
- W2890276887 cites W1960749344 @default.
- W2890276887 cites W1974849189 @default.
- W2890276887 cites W1984408895 @default.
- W2890276887 cites W1985725498 @default.
- W2890276887 cites W1989308683 @default.
- W2890276887 cites W1990732300 @default.
- W2890276887 cites W1999094940 @default.
- W2890276887 cites W2002339444 @default.
- W2890276887 cites W2005397254 @default.
- W2890276887 cites W2023821801 @default.
- W2890276887 cites W2026698152 @default.
- W2890276887 cites W2027532891 @default.
- W2890276887 cites W2032857806 @default.
- W2890276887 cites W2039474137 @default.
- W2890276887 cites W2040145793 @default.
- W2890276887 cites W2049633694 @default.
- W2890276887 cites W2062978979 @default.
- W2890276887 cites W2071641043 @default.
- W2890276887 cites W2082547933 @default.
- W2890276887 cites W2084079845 @default.
- W2890276887 cites W2104280368 @default.
- W2890276887 cites W2107848824 @default.
- W2890276887 cites W2107927071 @default.
- W2890276887 cites W2109926872 @default.
- W2890276887 cites W2110117250 @default.
- W2890276887 cites W2125911428 @default.
- W2890276887 cites W2126063994 @default.
- W2890276887 cites W2144314902 @default.
- W2890276887 cites W2164840723 @default.
- W2890276887 cites W2192083704 @default.
- W2890276887 cites W2319453161 @default.
- W2890276887 cites W2334059378 @default.
- W2890276887 cites W2429443795 @default.
- W2890276887 cites W2531834796 @default.
- W2890276887 cites W2547058912 @default.
- W2890276887 cites W2548610061 @default.
- W2890276887 cites W2561718493 @default.
- W2890276887 cites W2763014865 @default.
- W2890276887 cites W2801518441 @default.
- W2890276887 cites W2804667602 @default.
- W2890276887 cites W2891331134 @default.
- W2890276887 doi "https://doi.org/10.1080/15481603.2018.1509463" @default.
- W2890276887 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/6936759" @default.
- W2890276887 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/31889937" @default.
- W2890276887 hasPublicationYear "2018" @default.
- W2890276887 type Work @default.
- W2890276887 sameAs 2890276887 @default.
- W2890276887 citedByCount "17" @default.
- W2890276887 countsByYear W28902768872018 @default.
- W2890276887 countsByYear W28902768872019 @default.
- W2890276887 countsByYear W28902768872020 @default.
- W2890276887 countsByYear W28902768872021 @default.
- W2890276887 countsByYear W28902768872022 @default.
- W2890276887 countsByYear W28902768872023 @default.
- W2890276887 crossrefType "journal-article" @default.
- W2890276887 hasAuthorship W2890276887A5055813518 @default.
- W2890276887 hasAuthorship W2890276887A5087645671 @default.
- W2890276887 hasBestOaLocation W28902768872 @default.
- W2890276887 hasConcept C104114177 @default.
- W2890276887 hasConcept C105795698 @default.
- W2890276887 hasConcept C126838900 @default.
- W2890276887 hasConcept C127413603 @default.
- W2890276887 hasConcept C137800194 @default.
- W2890276887 hasConcept C144024400 @default.
- W2890276887 hasConcept C147176958 @default.
- W2890276887 hasConcept C149923435 @default.
- W2890276887 hasConcept C154945302 @default.
- W2890276887 hasConcept C183115368 @default.
- W2890276887 hasConcept C205649164 @default.
- W2890276887 hasConcept C2780408538 @default.
- W2890276887 hasConcept C2780648208 @default.
- W2890276887 hasConcept C2908647359 @default.
- W2890276887 hasConcept C33923547 @default.
- W2890276887 hasConcept C41008148 @default.
- W2890276887 hasConcept C4792198 @default.
- W2890276887 hasConcept C52130261 @default.
- W2890276887 hasConcept C58640448 @default.
- W2890276887 hasConcept C62649853 @default.
- W2890276887 hasConcept C71924100 @default.
- W2890276887 hasConceptScore W2890276887C104114177 @default.
- W2890276887 hasConceptScore W2890276887C105795698 @default.
- W2890276887 hasConceptScore W2890276887C126838900 @default.
- W2890276887 hasConceptScore W2890276887C127413603 @default.
- W2890276887 hasConceptScore W2890276887C137800194 @default.
- W2890276887 hasConceptScore W2890276887C144024400 @default.
- W2890276887 hasConceptScore W2890276887C147176958 @default.
- W2890276887 hasConceptScore W2890276887C149923435 @default.