Matches in SemOpenAlex for { <https://semopenalex.org/work/W2890295207> ?p ?o ?g. }
- W2890295207 endingPage "1157" @default.
- W2890295207 startingPage "1149" @default.
- W2890295207 abstract "Microbial source tracking (MST) techniques have been designed to identify the host source of fecal contamination in water. However, current MST techniques cannot provide geographic origins of particular sources because they do not provide any spatial information beyond the points of observation. In this study, the associations between landscape patterns and the major sources of microbial contamination were examined and the application of geospatial techniques (e.g., remote sensing and geographic information systems) and Bayesian modeling was explored to track microbial sources over the landscape. The land cover information of three watersheds (the lower Dungeness Watershed, the Middle Rio Grande Watershed, and the Arroyo Burro Watershed) in the United States was obtained either by classifying high resolution satellite images or directly using land cover datasets (e.g., National Land Cover Dataset, 2006 and 2011). Then, the relationship between land use/land cover (LULC) and microbial sources from these three geographically disparate watersheds were analyzed using Bayesian hierarchical models. The results showed the predictive positive associations between human sources of fecal contamination and developed area, between dog sources and grassland, and between bird sources and water, but negative associations between human sources and forest and water areas. Furthermore, the diversity of microbial sources had positive associations with landscape fragmentation and diversity indices. This study demonstrates associations between landscape patterns and major microbial sources and offers new insight in tracking the dominant sources of fecal contamination in water using geospatial and Bayesian techniques." @default.
- W2890295207 created "2018-09-27" @default.
- W2890295207 creator A5027381223 @default.
- W2890295207 date "2019-02-01" @default.
- W2890295207 modified "2023-10-18" @default.
- W2890295207 title "Linking landscape patterns to sources of water contamination: Implications for tracking fecal contaminants with geospatial and Bayesian approaches" @default.
- W2890295207 cites W1525865833 @default.
- W2890295207 cites W1964562994 @default.
- W2890295207 cites W1968955176 @default.
- W2890295207 cites W1988187926 @default.
- W2890295207 cites W1991211136 @default.
- W2890295207 cites W1996254216 @default.
- W2890295207 cites W2001324773 @default.
- W2890295207 cites W2001600934 @default.
- W2890295207 cites W2014626699 @default.
- W2890295207 cites W2019343545 @default.
- W2890295207 cites W2022278456 @default.
- W2890295207 cites W2032996212 @default.
- W2890295207 cites W2038838500 @default.
- W2890295207 cites W2044870503 @default.
- W2890295207 cites W2056695477 @default.
- W2890295207 cites W2065681743 @default.
- W2890295207 cites W2066517879 @default.
- W2890295207 cites W2068702651 @default.
- W2890295207 cites W2074111102 @default.
- W2890295207 cites W2079696937 @default.
- W2890295207 cites W2081568556 @default.
- W2890295207 cites W2083908429 @default.
- W2890295207 cites W2086799334 @default.
- W2890295207 cites W2087189381 @default.
- W2890295207 cites W2090592781 @default.
- W2890295207 cites W2107343036 @default.
- W2890295207 cites W2137046486 @default.
- W2890295207 cites W2138095805 @default.
- W2890295207 cites W2138593930 @default.
- W2890295207 cites W2149752076 @default.
- W2890295207 cites W2166109934 @default.
- W2890295207 cites W2169342017 @default.
- W2890295207 cites W2171046554 @default.
- W2890295207 cites W2272749819 @default.
- W2890295207 cites W2315922553 @default.
- W2890295207 cites W2332330436 @default.
- W2890295207 cites W2399232969 @default.
- W2890295207 cites W2482034193 @default.
- W2890295207 cites W2519945832 @default.
- W2890295207 cites W2528198603 @default.
- W2890295207 cites W2743077001 @default.
- W2890295207 doi "https://doi.org/10.1016/j.scitotenv.2018.09.087" @default.
- W2890295207 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/30308803" @default.
- W2890295207 hasPublicationYear "2019" @default.
- W2890295207 type Work @default.
- W2890295207 sameAs 2890295207 @default.
- W2890295207 citedByCount "16" @default.
- W2890295207 countsByYear W28902952072019 @default.
- W2890295207 countsByYear W28902952072020 @default.
- W2890295207 countsByYear W28902952072021 @default.
- W2890295207 countsByYear W28902952072022 @default.
- W2890295207 countsByYear W28902952072023 @default.
- W2890295207 crossrefType "journal-article" @default.
- W2890295207 hasAuthorship W2890295207A5027381223 @default.
- W2890295207 hasConcept C119857082 @default.
- W2890295207 hasConcept C124956284 @default.
- W2890295207 hasConcept C136764020 @default.
- W2890295207 hasConcept C150547873 @default.
- W2890295207 hasConcept C18903297 @default.
- W2890295207 hasConcept C205649164 @default.
- W2890295207 hasConcept C2779167275 @default.
- W2890295207 hasConcept C2780648208 @default.
- W2890295207 hasConcept C2780797713 @default.
- W2890295207 hasConcept C39432304 @default.
- W2890295207 hasConcept C41008148 @default.
- W2890295207 hasConcept C41856607 @default.
- W2890295207 hasConcept C4792198 @default.
- W2890295207 hasConcept C62649853 @default.
- W2890295207 hasConcept C86803240 @default.
- W2890295207 hasConcept C9770341 @default.
- W2890295207 hasConceptScore W2890295207C119857082 @default.
- W2890295207 hasConceptScore W2890295207C124956284 @default.
- W2890295207 hasConceptScore W2890295207C136764020 @default.
- W2890295207 hasConceptScore W2890295207C150547873 @default.
- W2890295207 hasConceptScore W2890295207C18903297 @default.
- W2890295207 hasConceptScore W2890295207C205649164 @default.
- W2890295207 hasConceptScore W2890295207C2779167275 @default.
- W2890295207 hasConceptScore W2890295207C2780648208 @default.
- W2890295207 hasConceptScore W2890295207C2780797713 @default.
- W2890295207 hasConceptScore W2890295207C39432304 @default.
- W2890295207 hasConceptScore W2890295207C41008148 @default.
- W2890295207 hasConceptScore W2890295207C41856607 @default.
- W2890295207 hasConceptScore W2890295207C4792198 @default.
- W2890295207 hasConceptScore W2890295207C62649853 @default.
- W2890295207 hasConceptScore W2890295207C86803240 @default.
- W2890295207 hasConceptScore W2890295207C9770341 @default.
- W2890295207 hasLocation W28902952071 @default.
- W2890295207 hasLocation W28902952072 @default.
- W2890295207 hasOpenAccess W2890295207 @default.
- W2890295207 hasPrimaryLocation W28902952071 @default.
- W2890295207 hasRelatedWork W2365031108 @default.
- W2890295207 hasRelatedWork W2890971531 @default.