Matches in SemOpenAlex for { <https://semopenalex.org/work/W2890300280> ?p ?o ?g. }
- W2890300280 endingPage "507" @default.
- W2890300280 startingPage "486" @default.
- W2890300280 abstract "In the coal-based combustion and gasification processes, the mineral matter contained in the coal (predominantly oxides), is left as an incombustible residue, termed ash. Commonly, ash deposits are formed on the heat absorbing surfaces of the exposed equipment of the combustion/gasification processes. These deposits lead to the occurrence of slagging or fouling and, consequently, reduced process efficiency. The ash fusion temperatures (AFTs) signify the temperature range over which the ash deposits are formed on the heat absorbing surfaces of the process equipment. Thus, for designing and operating the coal-based processes, it is important to have mathematical models predicting accurately the four types of AFTs namely initial deformation temperature, softening temperature, hemispherical temperature, and flow temperature. Several linear/nonlinear models with varying prediction accuracies and complexities are available for the AFT prediction. Their principal drawback is their applicability to the coals originating from a limited number of geographical regions. Accordingly, this study presents computational intelligence (CI) based nonlinear models to predict the four AFTs using the oxide composition of the coal ash as the model input. The CI methods used in the modeling are genetic programming (GP), artificial neural networks, and support vector regression. The notable features of this study are that the models with a better AFT prediction and generalization performance, a wider application potential, and reduced complexity, have been developed. Among the CI-based models, GP and MLP based models have yielded overall improved performance in predicting all four AFTs." @default.
- W2890300280 created "2018-09-27" @default.
- W2890300280 creator A5008160578 @default.
- W2890300280 creator A5061825257 @default.
- W2890300280 creator A5063771906 @default.
- W2890300280 creator A5077636876 @default.
- W2890300280 creator A5088777675 @default.
- W2890300280 date "2018-09-19" @default.
- W2890300280 modified "2023-10-18" @default.
- W2890300280 title "Prediction of coal ash fusion temperatures using computational intelligence based models" @default.
- W2890300280 cites W1498436455 @default.
- W2890300280 cites W1586335931 @default.
- W2890300280 cites W1908724451 @default.
- W2890300280 cites W1965616784 @default.
- W2890300280 cites W1970671275 @default.
- W2890300280 cites W1973090563 @default.
- W2890300280 cites W1979769287 @default.
- W2890300280 cites W1980064454 @default.
- W2890300280 cites W1983483347 @default.
- W2890300280 cites W1983999833 @default.
- W2890300280 cites W1987493259 @default.
- W2890300280 cites W1988244837 @default.
- W2890300280 cites W1995269336 @default.
- W2890300280 cites W2002343655 @default.
- W2890300280 cites W2019154940 @default.
- W2890300280 cites W2025696190 @default.
- W2890300280 cites W2031330614 @default.
- W2890300280 cites W2031462075 @default.
- W2890300280 cites W2038437915 @default.
- W2890300280 cites W2038766611 @default.
- W2890300280 cites W2043126941 @default.
- W2890300280 cites W2046377191 @default.
- W2890300280 cites W2050426259 @default.
- W2890300280 cites W2066625178 @default.
- W2890300280 cites W2068807482 @default.
- W2890300280 cites W2069556691 @default.
- W2890300280 cites W2075937869 @default.
- W2890300280 cites W2082143492 @default.
- W2890300280 cites W2083629655 @default.
- W2890300280 cites W2086768927 @default.
- W2890300280 cites W2087991369 @default.
- W2890300280 cites W2097137621 @default.
- W2890300280 cites W2135514714 @default.
- W2890300280 cites W2156909104 @default.
- W2890300280 cites W2158863190 @default.
- W2890300280 cites W2261475217 @default.
- W2890300280 cites W2497951974 @default.
- W2890300280 doi "https://doi.org/10.1007/s40789-018-0213-6" @default.
- W2890300280 hasPublicationYear "2018" @default.
- W2890300280 type Work @default.
- W2890300280 sameAs 2890300280 @default.
- W2890300280 citedByCount "12" @default.
- W2890300280 countsByYear W28903002802019 @default.
- W2890300280 countsByYear W28903002802020 @default.
- W2890300280 countsByYear W28903002802021 @default.
- W2890300280 countsByYear W28903002802023 @default.
- W2890300280 crossrefType "journal-article" @default.
- W2890300280 hasAuthorship W2890300280A5008160578 @default.
- W2890300280 hasAuthorship W2890300280A5061825257 @default.
- W2890300280 hasAuthorship W2890300280A5063771906 @default.
- W2890300280 hasAuthorship W2890300280A5077636876 @default.
- W2890300280 hasAuthorship W2890300280A5088777675 @default.
- W2890300280 hasBestOaLocation W28903002801 @default.
- W2890300280 hasConcept C105923489 @default.
- W2890300280 hasConcept C115792997 @default.
- W2890300280 hasConcept C121332964 @default.
- W2890300280 hasConcept C126989708 @default.
- W2890300280 hasConcept C127413603 @default.
- W2890300280 hasConcept C138885662 @default.
- W2890300280 hasConcept C158525013 @default.
- W2890300280 hasConcept C158622935 @default.
- W2890300280 hasConcept C178790620 @default.
- W2890300280 hasConcept C185592680 @default.
- W2890300280 hasConcept C188027245 @default.
- W2890300280 hasConcept C188471824 @default.
- W2890300280 hasConcept C21880701 @default.
- W2890300280 hasConcept C41625074 @default.
- W2890300280 hasConcept C41895202 @default.
- W2890300280 hasConcept C518851703 @default.
- W2890300280 hasConcept C548081761 @default.
- W2890300280 hasConcept C55493867 @default.
- W2890300280 hasConcept C62520636 @default.
- W2890300280 hasConcept C87343466 @default.
- W2890300280 hasConceptScore W2890300280C105923489 @default.
- W2890300280 hasConceptScore W2890300280C115792997 @default.
- W2890300280 hasConceptScore W2890300280C121332964 @default.
- W2890300280 hasConceptScore W2890300280C126989708 @default.
- W2890300280 hasConceptScore W2890300280C127413603 @default.
- W2890300280 hasConceptScore W2890300280C138885662 @default.
- W2890300280 hasConceptScore W2890300280C158525013 @default.
- W2890300280 hasConceptScore W2890300280C158622935 @default.
- W2890300280 hasConceptScore W2890300280C178790620 @default.
- W2890300280 hasConceptScore W2890300280C185592680 @default.
- W2890300280 hasConceptScore W2890300280C188027245 @default.
- W2890300280 hasConceptScore W2890300280C188471824 @default.
- W2890300280 hasConceptScore W2890300280C21880701 @default.
- W2890300280 hasConceptScore W2890300280C41625074 @default.
- W2890300280 hasConceptScore W2890300280C41895202 @default.