Matches in SemOpenAlex for { <https://semopenalex.org/work/W2890300983> ?p ?o ?g. }
- W2890300983 endingPage "159" @default.
- W2890300983 startingPage "150" @default.
- W2890300983 abstract "Abstract In this paper, a simple yet quite useful hyperspectral images (HSI) classification method based on adaptive total variation filtering (ATVF) is proposed. The proposed method consists of the following steps: First, the spectral dimension of the HSI is reduced with principal component analysis (PCA). Then, ATVF is employed to extract image features which not only reduces the noise in the image, but also effectively exploits spatial–spectral information. Therefore, it can provide an improved representation. Finally, the efficient extreme learning machine (ELM) with a very simple structure is used for classification. This paper analyzes the influence of different parameters of the ATVF and ELM algorithm on the classification performance in detail. Experiments are performed on three hyperspectral urban data sets. By comparing with other HSI classification methods and other different feature extraction methods, the proposed method based on the ATVF algorithm shows outstanding performance in terms of classification accuracy and computational efficiency when compared with other hyperspectral classification methods." @default.
- W2890300983 created "2018-09-27" @default.
- W2890300983 creator A5037075182 @default.
- W2890300983 creator A5042231008 @default.
- W2890300983 creator A5047129654 @default.
- W2890300983 creator A5057522977 @default.
- W2890300983 creator A5065543208 @default.
- W2890300983 date "2018-10-01" @default.
- W2890300983 modified "2023-09-23" @default.
- W2890300983 title "Adaptive total variation-based spectral-spatial feature extraction of hyperspectral image" @default.
- W2890300983 cites W1972524915 @default.
- W2890300983 cites W1972814520 @default.
- W2890300983 cites W1978284443 @default.
- W2890300983 cites W2006500012 @default.
- W2890300983 cites W2018482939 @default.
- W2890300983 cites W2026131661 @default.
- W2890300983 cites W2038133942 @default.
- W2890300983 cites W2039596145 @default.
- W2890300983 cites W2067782748 @default.
- W2890300983 cites W2069412682 @default.
- W2890300983 cites W2095190520 @default.
- W2890300983 cites W2097915756 @default.
- W2890300983 cites W2098057602 @default.
- W2890300983 cites W2103094532 @default.
- W2890300983 cites W2103559027 @default.
- W2890300983 cites W2107966405 @default.
- W2890300983 cites W2114819256 @default.
- W2890300983 cites W2115718371 @default.
- W2890300983 cites W2131697388 @default.
- W2890300983 cites W2136251662 @default.
- W2890300983 cites W2142592339 @default.
- W2890300983 cites W2144151128 @default.
- W2890300983 cites W2144348684 @default.
- W2890300983 cites W2149471024 @default.
- W2890300983 cites W2151288205 @default.
- W2890300983 cites W2152057649 @default.
- W2890300983 cites W2160662337 @default.
- W2890300983 cites W2164437025 @default.
- W2890300983 cites W2166229804 @default.
- W2890300983 cites W2166923144 @default.
- W2890300983 cites W2754507318 @default.
- W2890300983 cites W2793607269 @default.
- W2890300983 cites W2810874828 @default.
- W2890300983 cites W2885452623 @default.
- W2890300983 cites W2887798198 @default.
- W2890300983 cites W2897194080 @default.
- W2890300983 doi "https://doi.org/10.1016/j.jvcir.2018.09.016" @default.
- W2890300983 hasPublicationYear "2018" @default.
- W2890300983 type Work @default.
- W2890300983 sameAs 2890300983 @default.
- W2890300983 citedByCount "8" @default.
- W2890300983 countsByYear W28903009832019 @default.
- W2890300983 countsByYear W28903009832020 @default.
- W2890300983 countsByYear W28903009832022 @default.
- W2890300983 countsByYear W28903009832023 @default.
- W2890300983 crossrefType "journal-article" @default.
- W2890300983 hasAuthorship W2890300983A5037075182 @default.
- W2890300983 hasAuthorship W2890300983A5042231008 @default.
- W2890300983 hasAuthorship W2890300983A5047129654 @default.
- W2890300983 hasAuthorship W2890300983A5057522977 @default.
- W2890300983 hasAuthorship W2890300983A5065543208 @default.
- W2890300983 hasConcept C115961682 @default.
- W2890300983 hasConcept C121332964 @default.
- W2890300983 hasConcept C138885662 @default.
- W2890300983 hasConcept C153180895 @default.
- W2890300983 hasConcept C154945302 @default.
- W2890300983 hasConcept C159078339 @default.
- W2890300983 hasConcept C185592680 @default.
- W2890300983 hasConcept C2776401178 @default.
- W2890300983 hasConcept C2778334786 @default.
- W2890300983 hasConcept C31972630 @default.
- W2890300983 hasConcept C33923547 @default.
- W2890300983 hasConcept C41008148 @default.
- W2890300983 hasConcept C41895202 @default.
- W2890300983 hasConcept C43617362 @default.
- W2890300983 hasConcept C44870925 @default.
- W2890300983 hasConcept C4725764 @default.
- W2890300983 hasConcept C52622490 @default.
- W2890300983 hasConceptScore W2890300983C115961682 @default.
- W2890300983 hasConceptScore W2890300983C121332964 @default.
- W2890300983 hasConceptScore W2890300983C138885662 @default.
- W2890300983 hasConceptScore W2890300983C153180895 @default.
- W2890300983 hasConceptScore W2890300983C154945302 @default.
- W2890300983 hasConceptScore W2890300983C159078339 @default.
- W2890300983 hasConceptScore W2890300983C185592680 @default.
- W2890300983 hasConceptScore W2890300983C2776401178 @default.
- W2890300983 hasConceptScore W2890300983C2778334786 @default.
- W2890300983 hasConceptScore W2890300983C31972630 @default.
- W2890300983 hasConceptScore W2890300983C33923547 @default.
- W2890300983 hasConceptScore W2890300983C41008148 @default.
- W2890300983 hasConceptScore W2890300983C41895202 @default.
- W2890300983 hasConceptScore W2890300983C43617362 @default.
- W2890300983 hasConceptScore W2890300983C44870925 @default.
- W2890300983 hasConceptScore W2890300983C4725764 @default.
- W2890300983 hasConceptScore W2890300983C52622490 @default.
- W2890300983 hasFunder F4320321001 @default.
- W2890300983 hasLocation W28903009831 @default.
- W2890300983 hasOpenAccess W2890300983 @default.