Matches in SemOpenAlex for { <https://semopenalex.org/work/W2890316187> ?p ?o ?g. }
Showing items 1 to 62 of
62
with 100 items per page.
- W2890316187 abstract "Handwritten Bangla numeral recognition has been studied broadly in the last century. This is a very interest subject among the experimenters because of the progression of various pattern recognition algorithms. In this paper, we compare the results of most widely used machine learning method Like Multi Layer Percepton (MLP) and deep learning method like multilayer Convolutional Neural Network (CNN) to get the accuracy of 99.2% using CNN as compared to 97.97% using MLP on Bangla numeral image database named Halder et al." @default.
- W2890316187 created "2018-09-27" @default.
- W2890316187 creator A5009043386 @default.
- W2890316187 creator A5028077288 @default.
- W2890316187 date "2018-05-01" @default.
- W2890316187 modified "2023-09-24" @default.
- W2890316187 title "Handwritten Bangla Numeral Recognition using Convolutional Neural Networks" @default.
- W2890316187 doi "https://doi.org/10.1109/iementech.2018.8465296" @default.
- W2890316187 hasPublicationYear "2018" @default.
- W2890316187 type Work @default.
- W2890316187 sameAs 2890316187 @default.
- W2890316187 citedByCount "0" @default.
- W2890316187 crossrefType "proceedings-article" @default.
- W2890316187 hasAuthorship W2890316187A5009043386 @default.
- W2890316187 hasAuthorship W2890316187A5028077288 @default.
- W2890316187 hasConcept C108583219 @default.
- W2890316187 hasConcept C153180895 @default.
- W2890316187 hasConcept C154945302 @default.
- W2890316187 hasConcept C19235068 @default.
- W2890316187 hasConcept C204160518 @default.
- W2890316187 hasConcept C204321447 @default.
- W2890316187 hasConcept C28490314 @default.
- W2890316187 hasConcept C41008148 @default.
- W2890316187 hasConcept C50644808 @default.
- W2890316187 hasConcept C81363708 @default.
- W2890316187 hasConceptScore W2890316187C108583219 @default.
- W2890316187 hasConceptScore W2890316187C153180895 @default.
- W2890316187 hasConceptScore W2890316187C154945302 @default.
- W2890316187 hasConceptScore W2890316187C19235068 @default.
- W2890316187 hasConceptScore W2890316187C204160518 @default.
- W2890316187 hasConceptScore W2890316187C204321447 @default.
- W2890316187 hasConceptScore W2890316187C28490314 @default.
- W2890316187 hasConceptScore W2890316187C41008148 @default.
- W2890316187 hasConceptScore W2890316187C50644808 @default.
- W2890316187 hasConceptScore W2890316187C81363708 @default.
- W2890316187 hasLocation W28903161871 @default.
- W2890316187 hasOpenAccess W2890316187 @default.
- W2890316187 hasPrimaryLocation W28903161871 @default.
- W2890316187 hasRelatedWork W1936422054 @default.
- W2890316187 hasRelatedWork W2561176188 @default.
- W2890316187 hasRelatedWork W2571065915 @default.
- W2890316187 hasRelatedWork W2589736021 @default.
- W2890316187 hasRelatedWork W2613140201 @default.
- W2890316187 hasRelatedWork W2811354442 @default.
- W2890316187 hasRelatedWork W2907983487 @default.
- W2890316187 hasRelatedWork W2939633972 @default.
- W2890316187 hasRelatedWork W2979533666 @default.
- W2890316187 hasRelatedWork W3004084020 @default.
- W2890316187 hasRelatedWork W3009223712 @default.
- W2890316187 hasRelatedWork W3082083393 @default.
- W2890316187 hasRelatedWork W3127945299 @default.
- W2890316187 hasRelatedWork W3139768462 @default.
- W2890316187 hasRelatedWork W3151571032 @default.
- W2890316187 hasRelatedWork W3167144062 @default.
- W2890316187 hasRelatedWork W3169773055 @default.
- W2890316187 hasRelatedWork W3177421388 @default.
- W2890316187 hasRelatedWork W3182083160 @default.
- W2890316187 hasRelatedWork W755956977 @default.
- W2890316187 isParatext "false" @default.
- W2890316187 isRetracted "false" @default.
- W2890316187 magId "2890316187" @default.
- W2890316187 workType "article" @default.