Matches in SemOpenAlex for { <https://semopenalex.org/work/W2890339783> ?p ?o ?g. }
- W2890339783 endingPage "e0202558" @default.
- W2890339783 startingPage "e0202558" @default.
- W2890339783 abstract "There is considerable interest in analyzing the complexity of electroencephalography (EEG) signals. However, some traditional complexity measure algorithms only quantify the complexities of signals, but cannot discriminate different signals very well. To analyze the complexity of epileptic EEG signals better, a new multiscale permutation Rényi entropy (MPEr) algorithm is proposed. In this algorithm, the coarse-grained procedure is introduced by using weighting-averaging method, and the weighted factors are determined by analyzing nonlinear signals. We apply the new algorithm to analyze epileptic EEG signals. The experimental results show that MPEr algorithm has good performance for discriminating different EEG signals. Compared with permutation Rényi entropy (PEr) and multiscale permutation entropy (MPE), MPEr distinguishes different EEG signals successfully. The proposed MPEr algorithm is effective and has good applications prospects in EEG signals analysis." @default.
- W2890339783 created "2018-09-27" @default.
- W2890339783 creator A5001535567 @default.
- W2890339783 creator A5062654575 @default.
- W2890339783 creator A5075708894 @default.
- W2890339783 date "2018-09-04" @default.
- W2890339783 modified "2023-10-16" @default.
- W2890339783 title "Multiscale permutation Rényi entropy and its application for EEG signals" @default.
- W2890339783 cites W1606847346 @default.
- W2890339783 cites W1862394037 @default.
- W2890339783 cites W1916369898 @default.
- W2890339783 cites W1965239040 @default.
- W2890339783 cites W1978055414 @default.
- W2890339783 cites W1984164526 @default.
- W2890339783 cites W1987589156 @default.
- W2890339783 cites W1998850687 @default.
- W2890339783 cites W2003826906 @default.
- W2890339783 cites W2006803905 @default.
- W2890339783 cites W2012619887 @default.
- W2890339783 cites W2014683958 @default.
- W2890339783 cites W2020247582 @default.
- W2890339783 cites W2029532650 @default.
- W2890339783 cites W2041287404 @default.
- W2890339783 cites W2041935121 @default.
- W2890339783 cites W2053744708 @default.
- W2890339783 cites W2055442583 @default.
- W2890339783 cites W2058833125 @default.
- W2890339783 cites W2075862631 @default.
- W2890339783 cites W2077204677 @default.
- W2890339783 cites W2077770566 @default.
- W2890339783 cites W2090763911 @default.
- W2890339783 cites W2092119928 @default.
- W2890339783 cites W2093266575 @default.
- W2890339783 cites W2096209718 @default.
- W2890339783 cites W2105622546 @default.
- W2890339783 cites W2203206316 @default.
- W2890339783 cites W2266022344 @default.
- W2890339783 cites W2286439238 @default.
- W2890339783 cites W2293610270 @default.
- W2890339783 cites W2305715566 @default.
- W2890339783 cites W2322045482 @default.
- W2890339783 cites W2329020446 @default.
- W2890339783 cites W2336401120 @default.
- W2890339783 cites W2415252702 @default.
- W2890339783 cites W2432419794 @default.
- W2890339783 cites W2461134574 @default.
- W2890339783 cites W2590210438 @default.
- W2890339783 cites W2590656077 @default.
- W2890339783 cites W2625153752 @default.
- W2890339783 cites W3111718457 @default.
- W2890339783 doi "https://doi.org/10.1371/journal.pone.0202558" @default.
- W2890339783 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/6122795" @default.
- W2890339783 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/30180194" @default.
- W2890339783 hasPublicationYear "2018" @default.
- W2890339783 type Work @default.
- W2890339783 sameAs 2890339783 @default.
- W2890339783 citedByCount "17" @default.
- W2890339783 countsByYear W28903397832019 @default.
- W2890339783 countsByYear W28903397832020 @default.
- W2890339783 countsByYear W28903397832021 @default.
- W2890339783 countsByYear W28903397832022 @default.
- W2890339783 countsByYear W28903397832023 @default.
- W2890339783 crossrefType "journal-article" @default.
- W2890339783 hasAuthorship W2890339783A5001535567 @default.
- W2890339783 hasAuthorship W2890339783A5062654575 @default.
- W2890339783 hasAuthorship W2890339783A5075708894 @default.
- W2890339783 hasBestOaLocation W28903397831 @default.
- W2890339783 hasConcept C106301342 @default.
- W2890339783 hasConcept C11413529 @default.
- W2890339783 hasConcept C121332964 @default.
- W2890339783 hasConcept C153180895 @default.
- W2890339783 hasConcept C154945302 @default.
- W2890339783 hasConcept C15744967 @default.
- W2890339783 hasConcept C169760540 @default.
- W2890339783 hasConcept C183115368 @default.
- W2890339783 hasConcept C21308566 @default.
- W2890339783 hasConcept C24890656 @default.
- W2890339783 hasConcept C41008148 @default.
- W2890339783 hasConcept C522805319 @default.
- W2890339783 hasConcept C62520636 @default.
- W2890339783 hasConceptScore W2890339783C106301342 @default.
- W2890339783 hasConceptScore W2890339783C11413529 @default.
- W2890339783 hasConceptScore W2890339783C121332964 @default.
- W2890339783 hasConceptScore W2890339783C153180895 @default.
- W2890339783 hasConceptScore W2890339783C154945302 @default.
- W2890339783 hasConceptScore W2890339783C15744967 @default.
- W2890339783 hasConceptScore W2890339783C169760540 @default.
- W2890339783 hasConceptScore W2890339783C183115368 @default.
- W2890339783 hasConceptScore W2890339783C21308566 @default.
- W2890339783 hasConceptScore W2890339783C24890656 @default.
- W2890339783 hasConceptScore W2890339783C41008148 @default.
- W2890339783 hasConceptScore W2890339783C522805319 @default.
- W2890339783 hasConceptScore W2890339783C62520636 @default.
- W2890339783 hasFunder F4320321001 @default.
- W2890339783 hasIssue "9" @default.
- W2890339783 hasLocation W28903397831 @default.
- W2890339783 hasLocation W28903397832 @default.
- W2890339783 hasLocation W28903397833 @default.