Matches in SemOpenAlex for { <https://semopenalex.org/work/W2890355536> ?p ?o ?g. }
- W2890355536 endingPage "73" @default.
- W2890355536 startingPage "1" @default.
- W2890355536 abstract "We propose polynomial-time algorithms that sparsify planar and bounded-genus graphs while preserving optimal or near-optimal solutions to Steiner problems. Our main contribution is a polynomial-time algorithm that, given an unweighted undirected graph G embedded on a surface of genus g and a designated face f bounded by a simple cycle of length k , uncovers a set F ⊆ E ( G ) of size polynomial in g and k that contains an optimal Steiner tree for any set of terminals that is a subset of the vertices of f . We apply this general theorem to prove that: — Given an unweighted graph G embedded on a surface of genus g and a terminal set S ⊆ V ( G ), one can in polynomial time find a set F ⊆ E ( G ) that contains an optimal Steiner tree T for S and that has size polynomial in g and | E ( T )|. — An analogous result holds for an optimal Steiner forest for a set S of terminal pairs. — Given an unweighted planar graph G and a terminal set S ⊆ V ( G ), one can in polynomial time find a set F ⊆ E ( G ) that contains an optimal (edge) multiway cut C separating S (i.e., a cutset that intersects any path with endpoints in different terminals from S ) and that has size polynomial in | C |. In the language of parameterized complexity, these results imply the first polynomial kernels for S teiner T ree and S teiner F orest on planar and bounded-genus graphs (parameterized by the size of the tree and forest, respectively) and for (E dge ) M ultiway C ut on planar graphs (parameterized by the size of the cutset). Additionally, we obtain a weighted variant of our main contribution: a polynomial-time algorithm that, given an undirected plane graph G with positive edge weights, a designated face f bounded by a simple cycle of weight w ( f ), and an accuracy parameter ε > 0, uncovers a set F ⊆ E ( G ) of total weight at most poly(ε -1 ) w ( f ) that, for any set of terminal pairs that lie on f , contains a Steiner forest within additive error ε w ( f ) from the optimal Steiner forest." @default.
- W2890355536 created "2018-09-27" @default.
- W2890355536 creator A5000479623 @default.
- W2890355536 creator A5025494465 @default.
- W2890355536 creator A5041371022 @default.
- W2890355536 creator A5059330513 @default.
- W2890355536 date "2018-09-17" @default.
- W2890355536 modified "2023-09-25" @default.
- W2890355536 title "Network Sparsification for Steiner Problems on Planar and Bounded-Genus Graphs" @default.
- W2890355536 cites W100926944 @default.
- W2890355536 cites W1408746698 @default.
- W2890355536 cites W1523762238 @default.
- W2890355536 cites W1546924356 @default.
- W2890355536 cites W1552413686 @default.
- W2890355536 cites W1593947471 @default.
- W2890355536 cites W1607394607 @default.
- W2890355536 cites W171155747 @default.
- W2890355536 cites W1966397930 @default.
- W2890355536 cites W1976463682 @default.
- W2890355536 cites W1976584101 @default.
- W2890355536 cites W1976957234 @default.
- W2890355536 cites W1986916307 @default.
- W2890355536 cites W1995725694 @default.
- W2890355536 cites W1996575062 @default.
- W2890355536 cites W1997906261 @default.
- W2890355536 cites W1998964055 @default.
- W2890355536 cites W2000311286 @default.
- W2890355536 cites W2002041206 @default.
- W2890355536 cites W2009695707 @default.
- W2890355536 cites W2011823863 @default.
- W2890355536 cites W2015321560 @default.
- W2890355536 cites W2020112047 @default.
- W2890355536 cites W2028558845 @default.
- W2890355536 cites W2031229603 @default.
- W2890355536 cites W2039305125 @default.
- W2890355536 cites W2040112642 @default.
- W2890355536 cites W2045749371 @default.
- W2890355536 cites W2051540665 @default.
- W2890355536 cites W2052712469 @default.
- W2890355536 cites W2065166038 @default.
- W2890355536 cites W2067081844 @default.
- W2890355536 cites W2070664846 @default.
- W2890355536 cites W2078443814 @default.
- W2890355536 cites W2085348754 @default.
- W2890355536 cites W2086937160 @default.
- W2890355536 cites W2092029376 @default.
- W2890355536 cites W2103099082 @default.
- W2890355536 cites W2107284348 @default.
- W2890355536 cites W2114288716 @default.
- W2890355536 cites W2115049345 @default.
- W2890355536 cites W2119741712 @default.
- W2890355536 cites W2121641644 @default.
- W2890355536 cites W2127485201 @default.
- W2890355536 cites W2152986618 @default.
- W2890355536 cites W2156760067 @default.
- W2890355536 cites W2158584754 @default.
- W2890355536 cites W2255673366 @default.
- W2890355536 cites W2404960361 @default.
- W2890355536 cites W2563156040 @default.
- W2890355536 cites W2570206580 @default.
- W2890355536 cites W2762935521 @default.
- W2890355536 cites W3121576764 @default.
- W2890355536 cites W4245082111 @default.
- W2890355536 cites W95416648 @default.
- W2890355536 doi "https://doi.org/10.1145/3239560" @default.
- W2890355536 hasPublicationYear "2018" @default.
- W2890355536 type Work @default.
- W2890355536 sameAs 2890355536 @default.
- W2890355536 citedByCount "18" @default.
- W2890355536 countsByYear W28903555362016 @default.
- W2890355536 countsByYear W28903555362017 @default.
- W2890355536 countsByYear W28903555362019 @default.
- W2890355536 countsByYear W28903555362020 @default.
- W2890355536 countsByYear W28903555362021 @default.
- W2890355536 countsByYear W28903555362022 @default.
- W2890355536 crossrefType "journal-article" @default.
- W2890355536 hasAuthorship W2890355536A5000479623 @default.
- W2890355536 hasAuthorship W2890355536A5025494465 @default.
- W2890355536 hasAuthorship W2890355536A5041371022 @default.
- W2890355536 hasAuthorship W2890355536A5059330513 @default.
- W2890355536 hasBestOaLocation W28903555362 @default.
- W2890355536 hasConcept C101837359 @default.
- W2890355536 hasConcept C114614502 @default.
- W2890355536 hasConcept C118615104 @default.
- W2890355536 hasConcept C132525143 @default.
- W2890355536 hasConcept C132569581 @default.
- W2890355536 hasConcept C134306372 @default.
- W2890355536 hasConcept C165464430 @default.
- W2890355536 hasConcept C203776342 @default.
- W2890355536 hasConcept C311688 @default.
- W2890355536 hasConcept C33923547 @default.
- W2890355536 hasConcept C34388435 @default.
- W2890355536 hasConcept C43517604 @default.
- W2890355536 hasConcept C76220878 @default.
- W2890355536 hasConcept C90119067 @default.
- W2890355536 hasConceptScore W2890355536C101837359 @default.
- W2890355536 hasConceptScore W2890355536C114614502 @default.
- W2890355536 hasConceptScore W2890355536C118615104 @default.