Matches in SemOpenAlex for { <https://semopenalex.org/work/W2890394004> ?p ?o ?g. }
- W2890394004 endingPage "21" @default.
- W2890394004 startingPage "11" @default.
- W2890394004 abstract "The amount of data in soil science increased at exponential rates over the last decades, promoted by rapid technological innovation. This development led to a better understanding of processes but also required the introduction of data mining into soil science. With diffuse reflectance Fourier transform (DRIFT) spectroscopy, one of those new methods, soil scientist could build up large spectral libraries. These libraries can expand over large, heterogeneous areas requiring classification algorithms to find subsets or patterns in the data prior to further analysis. The k-means algorithm has become one of the most frequently used algorithms for this task. However, fuzzy k-means (FKM) clustering, a fuzzy variation of k-means, is potentially better suited for spectral data. Fuzzy logic allows for class overlaps and is supposed to reflect the complex nature of soil spectra and continuous environmental variables. In this study, we collected over 1000 mid-infrared DRIFT spectra of agricultural soils from the West African savannah zone and clustered the data using k-means and FKM. Our aim was to explore the feasibility of centroid-based cluster algorithms in finding substructures in spectral data and to discuss the benefits of fuzzy clustering. We found a two-group pattern separating the data set in a northern and southern part. The clustering could primarily be explained by geology and climatic gradients. While both algorithms performed similarly well in picking up the structure, FKM could reveal a transition zone between the two clusters that was not detectable with k-means. This transition zone was explained by a gradual change in aeolian dust deposition, topography, and a change in geology. With this study, we showed the benefits of fuzzy clustering over traditional hard clustering for finding substructure in unexplored spectral data. We recommend the use of continuous classes, as they incorporate more information that could potentially improve subsequent analysis." @default.
- W2890394004 created "2018-09-27" @default.
- W2890394004 creator A5029670929 @default.
- W2890394004 creator A5051030031 @default.
- W2890394004 creator A5052967096 @default.
- W2890394004 creator A5079931536 @default.
- W2890394004 date "2019-03-01" @default.
- W2890394004 modified "2023-10-12" @default.
- W2890394004 title "Advantages of fuzzy k-means over k-means clustering in the classification of diffuse reflectance soil spectra: A case study with West African soils" @default.
- W2890394004 cites W1965645851 @default.
- W2890394004 cites W1967495648 @default.
- W2890394004 cites W1967797625 @default.
- W2890394004 cites W1968724145 @default.
- W2890394004 cites W1973273412 @default.
- W2890394004 cites W1980362262 @default.
- W2890394004 cites W1981420979 @default.
- W2890394004 cites W1995450389 @default.
- W2890394004 cites W2001804870 @default.
- W2890394004 cites W2012358846 @default.
- W2890394004 cites W2016090370 @default.
- W2890394004 cites W2020448260 @default.
- W2890394004 cites W2022298819 @default.
- W2890394004 cites W2027368520 @default.
- W2890394004 cites W2027443997 @default.
- W2890394004 cites W2042679063 @default.
- W2890394004 cites W2046139462 @default.
- W2890394004 cites W2053823915 @default.
- W2890394004 cites W2054325787 @default.
- W2890394004 cites W2054603652 @default.
- W2890394004 cites W2069597679 @default.
- W2890394004 cites W2071868642 @default.
- W2890394004 cites W2079586129 @default.
- W2890394004 cites W2084359487 @default.
- W2890394004 cites W2089777064 @default.
- W2890394004 cites W2101461477 @default.
- W2890394004 cites W2103766443 @default.
- W2890394004 cites W2109606373 @default.
- W2890394004 cites W2123527588 @default.
- W2890394004 cites W2128944993 @default.
- W2890394004 cites W2291379488 @default.
- W2890394004 cites W2292439029 @default.
- W2890394004 cites W2566087511 @default.
- W2890394004 cites W2578531452 @default.
- W2890394004 cites W2614464134 @default.
- W2890394004 cites W2752185735 @default.
- W2890394004 cites W2769190442 @default.
- W2890394004 cites W4235169531 @default.
- W2890394004 cites W4242405356 @default.
- W2890394004 doi "https://doi.org/10.1016/j.geoderma.2018.09.004" @default.
- W2890394004 hasPublicationYear "2019" @default.
- W2890394004 type Work @default.
- W2890394004 sameAs 2890394004 @default.
- W2890394004 citedByCount "46" @default.
- W2890394004 countsByYear W28903940042019 @default.
- W2890394004 countsByYear W28903940042020 @default.
- W2890394004 countsByYear W28903940042021 @default.
- W2890394004 countsByYear W28903940042022 @default.
- W2890394004 countsByYear W28903940042023 @default.
- W2890394004 crossrefType "journal-article" @default.
- W2890394004 hasAuthorship W2890394004A5029670929 @default.
- W2890394004 hasAuthorship W2890394004A5051030031 @default.
- W2890394004 hasAuthorship W2890394004A5052967096 @default.
- W2890394004 hasAuthorship W2890394004A5079931536 @default.
- W2890394004 hasConcept C105611402 @default.
- W2890394004 hasConcept C121332964 @default.
- W2890394004 hasConcept C124101348 @default.
- W2890394004 hasConcept C1276947 @default.
- W2890394004 hasConcept C146599234 @default.
- W2890394004 hasConcept C154945302 @default.
- W2890394004 hasConcept C159390177 @default.
- W2890394004 hasConcept C159750122 @default.
- W2890394004 hasConcept C17212007 @default.
- W2890394004 hasConcept C33923547 @default.
- W2890394004 hasConcept C39432304 @default.
- W2890394004 hasConcept C41008148 @default.
- W2890394004 hasConcept C4839761 @default.
- W2890394004 hasConcept C58166 @default.
- W2890394004 hasConcept C73555534 @default.
- W2890394004 hasConceptScore W2890394004C105611402 @default.
- W2890394004 hasConceptScore W2890394004C121332964 @default.
- W2890394004 hasConceptScore W2890394004C124101348 @default.
- W2890394004 hasConceptScore W2890394004C1276947 @default.
- W2890394004 hasConceptScore W2890394004C146599234 @default.
- W2890394004 hasConceptScore W2890394004C154945302 @default.
- W2890394004 hasConceptScore W2890394004C159390177 @default.
- W2890394004 hasConceptScore W2890394004C159750122 @default.
- W2890394004 hasConceptScore W2890394004C17212007 @default.
- W2890394004 hasConceptScore W2890394004C33923547 @default.
- W2890394004 hasConceptScore W2890394004C39432304 @default.
- W2890394004 hasConceptScore W2890394004C41008148 @default.
- W2890394004 hasConceptScore W2890394004C4839761 @default.
- W2890394004 hasConceptScore W2890394004C58166 @default.
- W2890394004 hasConceptScore W2890394004C73555534 @default.
- W2890394004 hasFunder F4320321114 @default.
- W2890394004 hasFunder F4320323883 @default.
- W2890394004 hasLocation W28903940041 @default.
- W2890394004 hasOpenAccess W2890394004 @default.
- W2890394004 hasPrimaryLocation W28903940041 @default.