Matches in SemOpenAlex for { <https://semopenalex.org/work/W2890401343> ?p ?o ?g. }
- W2890401343 endingPage "68" @default.
- W2890401343 startingPage "59" @default.
- W2890401343 abstract "Developing spatially explicit models of Ecosystem Services (ES) distribution and diversity across the territory has been increasingly attracting the interest of researchers and policy-makers due to its potential to operacionalize and mainstream the ES concept into existing planning and policy tools. In this paper we explore the use of social media photographs to model the spatial distribution of people preferences for cultural ecosystem services (CES), map their hotspots, identify the determinant variables as well as the spatial correlation between CES. This research was applied in the Sudoeste Alentejano and Costa Vicentina Natural Park (PNSACV) located in Southwestern Alentejo, Portugal. A collection of 1378 geo-tagged digital images taken inside the Park and posted in the Flickr web platform between 2004 and 2015 were analyzed and classified according to a tailored list of CES. To model CES spatial distribution it was used a species distribution model – Maxent – adapted to combine the observation of CES occurrence with biophysical and infrastructural variables. This method allowed us to identify and map the social preferences for CES in this area. The distance to the ocean and distance to touristic and cultural infrastructure were the most determinant variables to explain CES distribution in PNSACV. Another relevant result of this study was the identification of pairs of CES (such as Recreation & Aesthetics services) with a significant spatial overlap. Using social media data can be an expedite and cost-effective way to identify and map CES, although this approach embodies some challenges and biases that need to be considered. The use of species distribution models, such as Maxent, can be particularly valuable to support the design of future scenarios and assist decision-making on land use planning." @default.
- W2890401343 created "2018-09-27" @default.
- W2890401343 creator A5021945010 @default.
- W2890401343 creator A5028434265 @default.
- W2890401343 creator A5030881551 @default.
- W2890401343 creator A5036835727 @default.
- W2890401343 creator A5055330607 @default.
- W2890401343 creator A5074863158 @default.
- W2890401343 date "2019-01-01" @default.
- W2890401343 modified "2023-10-05" @default.
- W2890401343 title "Combining social media photographs and species distribution models to map cultural ecosystem services: The case of a Natural Park in Portugal" @default.
- W2890401343 cites W1084343582 @default.
- W2890401343 cites W1554131881 @default.
- W2890401343 cites W1568201516 @default.
- W2890401343 cites W1582174288 @default.
- W2890401343 cites W1909609512 @default.
- W2890401343 cites W1967665524 @default.
- W2890401343 cites W1980193681 @default.
- W2890401343 cites W1988187608 @default.
- W2890401343 cites W1988322132 @default.
- W2890401343 cites W1991610066 @default.
- W2890401343 cites W1995255834 @default.
- W2890401343 cites W2030080871 @default.
- W2890401343 cites W2033686454 @default.
- W2890401343 cites W2042831537 @default.
- W2890401343 cites W2067155004 @default.
- W2890401343 cites W2085865532 @default.
- W2890401343 cites W2086444253 @default.
- W2890401343 cites W2090787680 @default.
- W2890401343 cites W2100846025 @default.
- W2890401343 cites W2112891611 @default.
- W2890401343 cites W2117458169 @default.
- W2890401343 cites W2119202692 @default.
- W2890401343 cites W2137600322 @default.
- W2890401343 cites W2145011667 @default.
- W2890401343 cites W2145154611 @default.
- W2890401343 cites W2145781056 @default.
- W2890401343 cites W2148566104 @default.
- W2890401343 cites W2156093889 @default.
- W2890401343 cites W2156304293 @default.
- W2890401343 cites W2171036246 @default.
- W2890401343 cites W2262923216 @default.
- W2890401343 cites W2544171483 @default.
- W2890401343 cites W2593699006 @default.
- W2890401343 doi "https://doi.org/10.1016/j.ecolind.2018.08.043" @default.
- W2890401343 hasPublicationYear "2019" @default.
- W2890401343 type Work @default.
- W2890401343 sameAs 2890401343 @default.
- W2890401343 citedByCount "81" @default.
- W2890401343 countsByYear W28904013432019 @default.
- W2890401343 countsByYear W28904013432020 @default.
- W2890401343 countsByYear W28904013432021 @default.
- W2890401343 countsByYear W28904013432022 @default.
- W2890401343 countsByYear W28904013432023 @default.
- W2890401343 crossrefType "journal-article" @default.
- W2890401343 hasAuthorship W2890401343A5021945010 @default.
- W2890401343 hasAuthorship W2890401343A5028434265 @default.
- W2890401343 hasAuthorship W2890401343A5030881551 @default.
- W2890401343 hasAuthorship W2890401343A5036835727 @default.
- W2890401343 hasAuthorship W2890401343A5055330607 @default.
- W2890401343 hasAuthorship W2890401343A5074863158 @default.
- W2890401343 hasConcept C107826830 @default.
- W2890401343 hasConcept C110121322 @default.
- W2890401343 hasConcept C110269972 @default.
- W2890401343 hasConcept C110872660 @default.
- W2890401343 hasConcept C116834253 @default.
- W2890401343 hasConcept C134306372 @default.
- W2890401343 hasConcept C136764020 @default.
- W2890401343 hasConcept C166957645 @default.
- W2890401343 hasConcept C17744445 @default.
- W2890401343 hasConcept C18903297 @default.
- W2890401343 hasConcept C18918823 @default.
- W2890401343 hasConcept C199539241 @default.
- W2890401343 hasConcept C205649164 @default.
- W2890401343 hasConcept C2777617010 @default.
- W2890401343 hasConcept C33923547 @default.
- W2890401343 hasConcept C39432304 @default.
- W2890401343 hasConcept C41008148 @default.
- W2890401343 hasConcept C518677369 @default.
- W2890401343 hasConcept C58640448 @default.
- W2890401343 hasConcept C58941895 @default.
- W2890401343 hasConcept C86803240 @default.
- W2890401343 hasConceptScore W2890401343C107826830 @default.
- W2890401343 hasConceptScore W2890401343C110121322 @default.
- W2890401343 hasConceptScore W2890401343C110269972 @default.
- W2890401343 hasConceptScore W2890401343C110872660 @default.
- W2890401343 hasConceptScore W2890401343C116834253 @default.
- W2890401343 hasConceptScore W2890401343C134306372 @default.
- W2890401343 hasConceptScore W2890401343C136764020 @default.
- W2890401343 hasConceptScore W2890401343C166957645 @default.
- W2890401343 hasConceptScore W2890401343C17744445 @default.
- W2890401343 hasConceptScore W2890401343C18903297 @default.
- W2890401343 hasConceptScore W2890401343C18918823 @default.
- W2890401343 hasConceptScore W2890401343C199539241 @default.
- W2890401343 hasConceptScore W2890401343C205649164 @default.
- W2890401343 hasConceptScore W2890401343C2777617010 @default.
- W2890401343 hasConceptScore W2890401343C33923547 @default.
- W2890401343 hasConceptScore W2890401343C39432304 @default.