Matches in SemOpenAlex for { <https://semopenalex.org/work/W2890410227> ?p ?o ?g. }
- W2890410227 abstract "Talent search and recommendation systems at LinkedIn strive to match the potential candidates to the hiring needs of a recruiter or a hiring manager expressed in terms of a search query or a job posting. Recent work in this domain has mainly focused on linear models, which do not take complex relationships between features into account, as well as ensemble tree models, which introduce non-linearity but are still insufficient for exploring all the potential feature interactions, and strictly separate feature generation from modeling. In this paper, we present the results of our application of deep and representation learning models on LinkedIn Recruiter. Our key contributions include: (i) Learning semantic representations of sparse entities within the talent search domain, such as recruiter ids, candidate ids, and skill entity ids, for which we utilize neural network models that take advantage of LinkedIn Economic Graph, and (ii) Deep models for learning recruiter engagement and candidate response in talent search applications. We also explore learning to rank approaches applied to deep models, and show the benefits for the talent search use case. Finally, we present offline and online evaluation results for LinkedIn talent search and recommendation systems, and discuss potential challenges along the path to a fully deep model architecture. The challenges and approaches discussed generalize to any multi-faceted search engine." @default.
- W2890410227 created "2018-09-27" @default.
- W2890410227 creator A5002843568 @default.
- W2890410227 creator A5039408873 @default.
- W2890410227 creator A5063724348 @default.
- W2890410227 creator A5071195197 @default.
- W2890410227 creator A5071606441 @default.
- W2890410227 creator A5072854024 @default.
- W2890410227 creator A5080799744 @default.
- W2890410227 creator A5081847831 @default.
- W2890410227 creator A5091663383 @default.
- W2890410227 date "2018-10-17" @default.
- W2890410227 modified "2023-10-16" @default.
- W2890410227 title "Towards Deep and Representation Learning for Talent Search at LinkedIn" @default.
- W2890410227 cites W2047221353 @default.
- W2890410227 cites W2069870183 @default.
- W2890410227 cites W2136189984 @default.
- W2890410227 cites W2142535891 @default.
- W2890410227 cites W2143331230 @default.
- W2890410227 cites W2152314154 @default.
- W2890410227 cites W2186845332 @default.
- W2890410227 cites W2219430387 @default.
- W2890410227 cites W2475334473 @default.
- W2890410227 cites W2536015822 @default.
- W2890410227 cites W3102476541 @default.
- W2890410227 cites W3104097132 @default.
- W2890410227 cites W3105705953 @default.
- W2890410227 cites W4290960952 @default.
- W2890410227 cites W4291474301 @default.
- W2890410227 doi "https://doi.org/10.1145/3269206.3272030" @default.
- W2890410227 hasPublicationYear "2018" @default.
- W2890410227 type Work @default.
- W2890410227 sameAs 2890410227 @default.
- W2890410227 citedByCount "41" @default.
- W2890410227 countsByYear W28904102272019 @default.
- W2890410227 countsByYear W28904102272020 @default.
- W2890410227 countsByYear W28904102272021 @default.
- W2890410227 countsByYear W28904102272022 @default.
- W2890410227 countsByYear W28904102272023 @default.
- W2890410227 crossrefType "proceedings-article" @default.
- W2890410227 hasAuthorship W2890410227A5002843568 @default.
- W2890410227 hasAuthorship W2890410227A5039408873 @default.
- W2890410227 hasAuthorship W2890410227A5063724348 @default.
- W2890410227 hasAuthorship W2890410227A5071195197 @default.
- W2890410227 hasAuthorship W2890410227A5071606441 @default.
- W2890410227 hasAuthorship W2890410227A5072854024 @default.
- W2890410227 hasAuthorship W2890410227A5080799744 @default.
- W2890410227 hasAuthorship W2890410227A5081847831 @default.
- W2890410227 hasAuthorship W2890410227A5091663383 @default.
- W2890410227 hasBestOaLocation W28904102272 @default.
- W2890410227 hasConcept C108583219 @default.
- W2890410227 hasConcept C114614502 @default.
- W2890410227 hasConcept C119857082 @default.
- W2890410227 hasConcept C134306372 @default.
- W2890410227 hasConcept C138885662 @default.
- W2890410227 hasConcept C154945302 @default.
- W2890410227 hasConcept C164226766 @default.
- W2890410227 hasConcept C166423231 @default.
- W2890410227 hasConcept C17744445 @default.
- W2890410227 hasConcept C189430467 @default.
- W2890410227 hasConcept C199539241 @default.
- W2890410227 hasConcept C23123220 @default.
- W2890410227 hasConcept C2522767166 @default.
- W2890410227 hasConcept C26517878 @default.
- W2890410227 hasConcept C2776359362 @default.
- W2890410227 hasConcept C2776401178 @default.
- W2890410227 hasConcept C33923547 @default.
- W2890410227 hasConcept C36503486 @default.
- W2890410227 hasConcept C38652104 @default.
- W2890410227 hasConcept C41008148 @default.
- W2890410227 hasConcept C41895202 @default.
- W2890410227 hasConcept C59404180 @default.
- W2890410227 hasConcept C86037889 @default.
- W2890410227 hasConcept C94625758 @default.
- W2890410227 hasConcept C97854310 @default.
- W2890410227 hasConceptScore W2890410227C108583219 @default.
- W2890410227 hasConceptScore W2890410227C114614502 @default.
- W2890410227 hasConceptScore W2890410227C119857082 @default.
- W2890410227 hasConceptScore W2890410227C134306372 @default.
- W2890410227 hasConceptScore W2890410227C138885662 @default.
- W2890410227 hasConceptScore W2890410227C154945302 @default.
- W2890410227 hasConceptScore W2890410227C164226766 @default.
- W2890410227 hasConceptScore W2890410227C166423231 @default.
- W2890410227 hasConceptScore W2890410227C17744445 @default.
- W2890410227 hasConceptScore W2890410227C189430467 @default.
- W2890410227 hasConceptScore W2890410227C199539241 @default.
- W2890410227 hasConceptScore W2890410227C23123220 @default.
- W2890410227 hasConceptScore W2890410227C2522767166 @default.
- W2890410227 hasConceptScore W2890410227C26517878 @default.
- W2890410227 hasConceptScore W2890410227C2776359362 @default.
- W2890410227 hasConceptScore W2890410227C2776401178 @default.
- W2890410227 hasConceptScore W2890410227C33923547 @default.
- W2890410227 hasConceptScore W2890410227C36503486 @default.
- W2890410227 hasConceptScore W2890410227C38652104 @default.
- W2890410227 hasConceptScore W2890410227C41008148 @default.
- W2890410227 hasConceptScore W2890410227C41895202 @default.
- W2890410227 hasConceptScore W2890410227C59404180 @default.
- W2890410227 hasConceptScore W2890410227C86037889 @default.
- W2890410227 hasConceptScore W2890410227C94625758 @default.
- W2890410227 hasConceptScore W2890410227C97854310 @default.