Matches in SemOpenAlex for { <https://semopenalex.org/work/W2890422014> ?p ?o ?g. }
- W2890422014 endingPage "144" @default.
- W2890422014 startingPage "134" @default.
- W2890422014 abstract "Reverse logistics is indispensable for resources reuse and circular economy, and a reverse logistics network optimization problem for end-of-life vehicles is studied frequently. Recent researches have focused on the material flow for different end-of-life vehicles. However, the primary question for an end-of-life vehicles recovery network is to determine optimal network nodes. To account for it, we considered a facility location allocation problem of end-of-life vehicles recovery network, and established a mathematical model to solve it. The model is used to achieve the minimization of cost for deciding optimal locations of end-of-life vehicles recovery network. The facility location allocation problem is a non-deterministic polynomial complete problem proved with increase in the number of candidate locations. This type of problem usually handled by a metaheuristics. Therefore, we proposed a valid novel approach based on artificial bee colony to solve the problem. Artificial bee colony is an optimization method that imitates bee behavior. Also, the proposed algorithm is applied to two different scale real-life cases, and some comparisons with several presented algorithms are presented to illustrate the effectiveness of the presented method." @default.
- W2890422014 created "2018-09-27" @default.
- W2890422014 creator A5035329614 @default.
- W2890422014 creator A5037650050 @default.
- W2890422014 creator A5050198482 @default.
- W2890422014 creator A5056249306 @default.
- W2890422014 creator A5072705483 @default.
- W2890422014 creator A5079914883 @default.
- W2890422014 date "2018-12-01" @default.
- W2890422014 modified "2023-10-18" @default.
- W2890422014 title "An improved artificial bee colony for facility location allocation problem of end-of-life vehicles recovery network" @default.
- W2890422014 cites W1885238261 @default.
- W2890422014 cites W1965697656 @default.
- W2890422014 cites W1982924738 @default.
- W2890422014 cites W2006785664 @default.
- W2890422014 cites W2007379796 @default.
- W2890422014 cites W2012635884 @default.
- W2890422014 cites W2019534238 @default.
- W2890422014 cites W2026063805 @default.
- W2890422014 cites W2030902305 @default.
- W2890422014 cites W2031935785 @default.
- W2890422014 cites W2032041832 @default.
- W2890422014 cites W2036295094 @default.
- W2890422014 cites W2039042958 @default.
- W2890422014 cites W2039186158 @default.
- W2890422014 cites W2069051348 @default.
- W2890422014 cites W2082741438 @default.
- W2890422014 cites W2099665126 @default.
- W2890422014 cites W2169064301 @default.
- W2890422014 cites W2175173276 @default.
- W2890422014 cites W2316356384 @default.
- W2890422014 cites W2327691617 @default.
- W2890422014 cites W2342514950 @default.
- W2890422014 cites W2402736019 @default.
- W2890422014 cites W2507491893 @default.
- W2890422014 cites W2553902410 @default.
- W2890422014 cites W2581503389 @default.
- W2890422014 cites W2586481491 @default.
- W2890422014 cites W2587845058 @default.
- W2890422014 cites W2588847126 @default.
- W2890422014 cites W2596814470 @default.
- W2890422014 cites W2602213641 @default.
- W2890422014 cites W2611347159 @default.
- W2890422014 cites W2617897538 @default.
- W2890422014 cites W2623581693 @default.
- W2890422014 cites W2729636862 @default.
- W2890422014 cites W2740528965 @default.
- W2890422014 cites W2746473624 @default.
- W2890422014 cites W2747899485 @default.
- W2890422014 cites W2750477080 @default.
- W2890422014 cites W2755410789 @default.
- W2890422014 cites W2756629659 @default.
- W2890422014 cites W2766419082 @default.
- W2890422014 cites W2776922538 @default.
- W2890422014 cites W2782143633 @default.
- W2890422014 cites W2789278282 @default.
- W2890422014 cites W2793006007 @default.
- W2890422014 cites W2888727839 @default.
- W2890422014 doi "https://doi.org/10.1016/j.jclepro.2018.09.086" @default.
- W2890422014 hasPublicationYear "2018" @default.
- W2890422014 type Work @default.
- W2890422014 sameAs 2890422014 @default.
- W2890422014 citedByCount "37" @default.
- W2890422014 countsByYear W28904220142019 @default.
- W2890422014 countsByYear W28904220142020 @default.
- W2890422014 countsByYear W28904220142021 @default.
- W2890422014 countsByYear W28904220142022 @default.
- W2890422014 countsByYear W28904220142023 @default.
- W2890422014 crossrefType "journal-article" @default.
- W2890422014 hasAuthorship W2890422014A5035329614 @default.
- W2890422014 hasAuthorship W2890422014A5037650050 @default.
- W2890422014 hasAuthorship W2890422014A5050198482 @default.
- W2890422014 hasAuthorship W2890422014A5056249306 @default.
- W2890422014 hasAuthorship W2890422014A5072705483 @default.
- W2890422014 hasAuthorship W2890422014A5079914883 @default.
- W2890422014 hasConcept C108005400 @default.
- W2890422014 hasConcept C108713360 @default.
- W2890422014 hasConcept C109718341 @default.
- W2890422014 hasConcept C114563136 @default.
- W2890422014 hasConcept C114809511 @default.
- W2890422014 hasConcept C126255220 @default.
- W2890422014 hasConcept C127413603 @default.
- W2890422014 hasConcept C147764199 @default.
- W2890422014 hasConcept C154945302 @default.
- W2890422014 hasConcept C17744445 @default.
- W2890422014 hasConcept C199539241 @default.
- W2890422014 hasConcept C206588197 @default.
- W2890422014 hasConcept C2777382958 @default.
- W2890422014 hasConcept C31258907 @default.
- W2890422014 hasConcept C33923547 @default.
- W2890422014 hasConcept C41008148 @default.
- W2890422014 hasConcept C42475967 @default.
- W2890422014 hasConcept C548081761 @default.
- W2890422014 hasConcept C97133563 @default.
- W2890422014 hasConceptScore W2890422014C108005400 @default.
- W2890422014 hasConceptScore W2890422014C108713360 @default.
- W2890422014 hasConceptScore W2890422014C109718341 @default.
- W2890422014 hasConceptScore W2890422014C114563136 @default.