Matches in SemOpenAlex for { <https://semopenalex.org/work/W2890431171> ?p ?o ?g. }
Showing items 1 to 92 of
92
with 100 items per page.
- W2890431171 endingPage "701" @default.
- W2890431171 startingPage "701" @default.
- W2890431171 abstract "In view of the nonlinear characteristics of electroencephalography (EEG) signals collected in the driving fatigue state recognition research and the issue that the recognition accuracy of the driving fatigue state recognition method based on EEG is still unsatisfactory, this paper proposes a driving fatigue recognition method based on sample entropy (SE) and kernel principal component analysis (KPCA), which combines the advantage of the high recognition accuracy of sample entropy and the advantages of KPCA in dimensionality reduction for nonlinear principal components and the strong non-linear processing capability. By using support vector machine (SVM) classifier, the proposed method (called SE_KPCA) is tested on the EEG data, and compared with those based on fuzzy entropy (FE), combination entropy (CE), three kinds of entropies including SE, FE and CE that merged with KPCA. Experiment results show that the method is effective." @default.
- W2890431171 created "2018-09-27" @default.
- W2890431171 creator A5021823194 @default.
- W2890431171 creator A5027326100 @default.
- W2890431171 creator A5067457943 @default.
- W2890431171 creator A5074249401 @default.
- W2890431171 date "2018-09-13" @default.
- W2890431171 modified "2023-09-24" @default.
- W2890431171 title "Research on Recognition Method of Driving Fatigue State Based on Sample Entropy and Kernel Principal Component Analysis" @default.
- W2890431171 cites W2077204677 @default.
- W2890431171 cites W2286439238 @default.
- W2890431171 cites W2319734199 @default.
- W2890431171 cites W2587124275 @default.
- W2890431171 cites W2590210438 @default.
- W2890431171 cites W2799501394 @default.
- W2890431171 cites W2883597459 @default.
- W2890431171 doi "https://doi.org/10.3390/e20090701" @default.
- W2890431171 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/7513215" @default.
- W2890431171 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/33265790" @default.
- W2890431171 hasPublicationYear "2018" @default.
- W2890431171 type Work @default.
- W2890431171 sameAs 2890431171 @default.
- W2890431171 citedByCount "16" @default.
- W2890431171 countsByYear W28904311712018 @default.
- W2890431171 countsByYear W28904311712019 @default.
- W2890431171 countsByYear W28904311712020 @default.
- W2890431171 countsByYear W28904311712021 @default.
- W2890431171 countsByYear W28904311712022 @default.
- W2890431171 countsByYear W28904311712023 @default.
- W2890431171 crossrefType "journal-article" @default.
- W2890431171 hasAuthorship W2890431171A5021823194 @default.
- W2890431171 hasAuthorship W2890431171A5027326100 @default.
- W2890431171 hasAuthorship W2890431171A5067457943 @default.
- W2890431171 hasAuthorship W2890431171A5074249401 @default.
- W2890431171 hasBestOaLocation W28904311711 @default.
- W2890431171 hasConcept C106301342 @default.
- W2890431171 hasConcept C118552586 @default.
- W2890431171 hasConcept C121332964 @default.
- W2890431171 hasConcept C122280245 @default.
- W2890431171 hasConcept C12267149 @default.
- W2890431171 hasConcept C153180895 @default.
- W2890431171 hasConcept C154945302 @default.
- W2890431171 hasConcept C15744967 @default.
- W2890431171 hasConcept C182335926 @default.
- W2890431171 hasConcept C27438332 @default.
- W2890431171 hasConcept C28490314 @default.
- W2890431171 hasConcept C41008148 @default.
- W2890431171 hasConcept C522805319 @default.
- W2890431171 hasConcept C62520636 @default.
- W2890431171 hasConcept C66696666 @default.
- W2890431171 hasConcept C70518039 @default.
- W2890431171 hasConcept C86859247 @default.
- W2890431171 hasConceptScore W2890431171C106301342 @default.
- W2890431171 hasConceptScore W2890431171C118552586 @default.
- W2890431171 hasConceptScore W2890431171C121332964 @default.
- W2890431171 hasConceptScore W2890431171C122280245 @default.
- W2890431171 hasConceptScore W2890431171C12267149 @default.
- W2890431171 hasConceptScore W2890431171C153180895 @default.
- W2890431171 hasConceptScore W2890431171C154945302 @default.
- W2890431171 hasConceptScore W2890431171C15744967 @default.
- W2890431171 hasConceptScore W2890431171C182335926 @default.
- W2890431171 hasConceptScore W2890431171C27438332 @default.
- W2890431171 hasConceptScore W2890431171C28490314 @default.
- W2890431171 hasConceptScore W2890431171C41008148 @default.
- W2890431171 hasConceptScore W2890431171C522805319 @default.
- W2890431171 hasConceptScore W2890431171C62520636 @default.
- W2890431171 hasConceptScore W2890431171C66696666 @default.
- W2890431171 hasConceptScore W2890431171C70518039 @default.
- W2890431171 hasConceptScore W2890431171C86859247 @default.
- W2890431171 hasIssue "9" @default.
- W2890431171 hasLocation W28904311711 @default.
- W2890431171 hasLocation W28904311712 @default.
- W2890431171 hasLocation W28904311713 @default.
- W2890431171 hasOpenAccess W2890431171 @default.
- W2890431171 hasPrimaryLocation W28904311711 @default.
- W2890431171 hasRelatedWork W1756633271 @default.
- W2890431171 hasRelatedWork W1974076946 @default.
- W2890431171 hasRelatedWork W2008326590 @default.
- W2890431171 hasRelatedWork W2071626605 @default.
- W2890431171 hasRelatedWork W2120337110 @default.
- W2890431171 hasRelatedWork W2169725059 @default.
- W2890431171 hasRelatedWork W2358824780 @default.
- W2890431171 hasRelatedWork W2372383879 @default.
- W2890431171 hasRelatedWork W2392812607 @default.
- W2890431171 hasRelatedWork W2944973397 @default.
- W2890431171 hasVolume "20" @default.
- W2890431171 isParatext "false" @default.
- W2890431171 isRetracted "false" @default.
- W2890431171 magId "2890431171" @default.
- W2890431171 workType "article" @default.