Matches in SemOpenAlex for { <https://semopenalex.org/work/W2890434712> ?p ?o ?g. }
Showing items 1 to 87 of
87
with 100 items per page.
- W2890434712 endingPage "1691" @default.
- W2890434712 startingPage "1679" @default.
- W2890434712 abstract "Abstract Despite the clear success of forecast combination in many economic environments, several important issues remain incompletely resolved. The issues relate to the selection of the set of forecasts to combine, and whether some form of additional regularization (e.g., shrinkage) is desirable. Against this background, and also considering the frequently-found good performance of simple-average combinations, we propose a LASSO-based procedure that sets some combining weights to zero and shrinks the survivors toward equality (“partially-egalitarian LASSO”). Ex post analysis reveals that the optimal solution has a very simple form: the vast majority of forecasters should be discarded, and the remainder should be averaged. We therefore propose and explore direct subset-averaging procedures that are motivated by the structure of partially-egalitarian LASSO and the lessons learned, which, unlike LASSO, do not require the choice of a tuning parameter. Intriguingly, in an application to the European Central Bank Survey of Professional Forecasters, our procedures outperform simple average and median forecasts; indeed, they perform approximately as well as the ex post best forecaster." @default.
- W2890434712 created "2018-09-27" @default.
- W2890434712 creator A5002999177 @default.
- W2890434712 creator A5084412348 @default.
- W2890434712 date "2019-10-01" @default.
- W2890434712 modified "2023-10-17" @default.
- W2890434712 title "Machine learning for regularized survey forecast combination: Partially-egalitarian LASSO and its derivatives" @default.
- W2890434712 cites W1605276600 @default.
- W2890434712 cites W1968750601 @default.
- W2890434712 cites W1980003240 @default.
- W2890434712 cites W1986164282 @default.
- W2890434712 cites W1986528915 @default.
- W2890434712 cites W2000842688 @default.
- W2890434712 cites W2012653948 @default.
- W2890434712 cites W2020925091 @default.
- W2890434712 cites W2030065593 @default.
- W2890434712 cites W2057182962 @default.
- W2890434712 cites W2092429678 @default.
- W2890434712 cites W2108731026 @default.
- W2890434712 cites W2111928004 @default.
- W2890434712 cites W2125536334 @default.
- W2890434712 cites W2137918734 @default.
- W2890434712 cites W2147190688 @default.
- W2890434712 cites W2150865801 @default.
- W2890434712 cites W2161020850 @default.
- W2890434712 cites W2162859319 @default.
- W2890434712 cites W2413355209 @default.
- W2890434712 cites W2529052817 @default.
- W2890434712 cites W3122913377 @default.
- W2890434712 cites W4205610612 @default.
- W2890434712 cites W4239414618 @default.
- W2890434712 cites W4248244593 @default.
- W2890434712 doi "https://doi.org/10.1016/j.ijforecast.2018.09.006" @default.
- W2890434712 hasPublicationYear "2019" @default.
- W2890434712 type Work @default.
- W2890434712 sameAs 2890434712 @default.
- W2890434712 citedByCount "80" @default.
- W2890434712 countsByYear W28904347122018 @default.
- W2890434712 countsByYear W28904347122019 @default.
- W2890434712 countsByYear W28904347122020 @default.
- W2890434712 countsByYear W28904347122021 @default.
- W2890434712 countsByYear W28904347122022 @default.
- W2890434712 countsByYear W28904347122023 @default.
- W2890434712 crossrefType "journal-article" @default.
- W2890434712 hasAuthorship W2890434712A5002999177 @default.
- W2890434712 hasAuthorship W2890434712A5084412348 @default.
- W2890434712 hasBestOaLocation W28904347122 @default.
- W2890434712 hasConcept C119857082 @default.
- W2890434712 hasConcept C136764020 @default.
- W2890434712 hasConcept C144237770 @default.
- W2890434712 hasConcept C149782125 @default.
- W2890434712 hasConcept C154945302 @default.
- W2890434712 hasConcept C162324750 @default.
- W2890434712 hasConcept C33923547 @default.
- W2890434712 hasConcept C37616216 @default.
- W2890434712 hasConcept C41008148 @default.
- W2890434712 hasConceptScore W2890434712C119857082 @default.
- W2890434712 hasConceptScore W2890434712C136764020 @default.
- W2890434712 hasConceptScore W2890434712C144237770 @default.
- W2890434712 hasConceptScore W2890434712C149782125 @default.
- W2890434712 hasConceptScore W2890434712C154945302 @default.
- W2890434712 hasConceptScore W2890434712C162324750 @default.
- W2890434712 hasConceptScore W2890434712C33923547 @default.
- W2890434712 hasConceptScore W2890434712C37616216 @default.
- W2890434712 hasConceptScore W2890434712C41008148 @default.
- W2890434712 hasIssue "4" @default.
- W2890434712 hasLocation W28904347121 @default.
- W2890434712 hasLocation W28904347122 @default.
- W2890434712 hasOpenAccess W2890434712 @default.
- W2890434712 hasPrimaryLocation W28904347121 @default.
- W2890434712 hasRelatedWork W2899084033 @default.
- W2890434712 hasRelatedWork W2961085424 @default.
- W2890434712 hasRelatedWork W3005055299 @default.
- W2890434712 hasRelatedWork W3129804828 @default.
- W2890434712 hasRelatedWork W3174196512 @default.
- W2890434712 hasRelatedWork W4283697347 @default.
- W2890434712 hasRelatedWork W4286629047 @default.
- W2890434712 hasRelatedWork W4298144215 @default.
- W2890434712 hasRelatedWork W4306674287 @default.
- W2890434712 hasRelatedWork W4224009465 @default.
- W2890434712 hasVolume "35" @default.
- W2890434712 isParatext "false" @default.
- W2890434712 isRetracted "false" @default.
- W2890434712 magId "2890434712" @default.
- W2890434712 workType "article" @default.