Matches in SemOpenAlex for { <https://semopenalex.org/work/W2890465787> ?p ?o ?g. }
- W2890465787 endingPage "523" @default.
- W2890465787 startingPage "509" @default.
- W2890465787 abstract "A wickless heat pipe (WHP) comprises of an evacuated-close tube filled with an appropriate amount of working fluid. In this study, the effect of Al2O3/water nanofluid as the working media on thermal performance of WHP investigated and compared with pure water by designing an optimized Artificial Neural Network (ANN). ANN trained with the collected test data obtained from experimental setup and validated. Multilayer Perceptron configuration (MLP) adopted for the ANN. The MLP architecture consists of four input nodes representing the parameters; input power, volume concentration of nanofluid, filling ratio and mass rate in condenser section, and a single output node representing the thermal efficiency of WHP. According to sensitivity analysis results, volume concentration is the most significant parameter which affects the WHP performance. Also, since the ANN test output data are sufficiently close to experimental one, it can be inferred that the ANN model can be applied to accurately model WHP thermal performance." @default.
- W2890465787 created "2018-09-27" @default.
- W2890465787 creator A5003316993 @default.
- W2890465787 creator A5089127302 @default.
- W2890465787 date "2018-09-05" @default.
- W2890465787 modified "2023-09-30" @default.
- W2890465787 title "Thermal performance prediction of wickless heat pipe with Al<sub>2</sub>O<sub>3</sub>/water nanofluid using artificial neural network" @default.
- W2890465787 cites W1269364743 @default.
- W2890465787 cites W1495464107 @default.
- W2890465787 cites W1967200143 @default.
- W2890465787 cites W1971520675 @default.
- W2890465787 cites W1980094141 @default.
- W2890465787 cites W1984457886 @default.
- W2890465787 cites W1988718031 @default.
- W2890465787 cites W2007621628 @default.
- W2890465787 cites W2014211982 @default.
- W2890465787 cites W2019103416 @default.
- W2890465787 cites W2021405069 @default.
- W2890465787 cites W2021644259 @default.
- W2890465787 cites W2027830987 @default.
- W2890465787 cites W2029578450 @default.
- W2890465787 cites W2033797169 @default.
- W2890465787 cites W2035773644 @default.
- W2890465787 cites W2036263127 @default.
- W2890465787 cites W2041115671 @default.
- W2890465787 cites W2048310957 @default.
- W2890465787 cites W2049939533 @default.
- W2890465787 cites W2050247215 @default.
- W2890465787 cites W2052397377 @default.
- W2890465787 cites W2068749486 @default.
- W2890465787 cites W2070431927 @default.
- W2890465787 cites W2071653847 @default.
- W2890465787 cites W2074331562 @default.
- W2890465787 cites W2074846350 @default.
- W2890465787 cites W2081546928 @default.
- W2890465787 cites W2104210979 @default.
- W2890465787 cites W2163874120 @default.
- W2890465787 cites W2203023521 @default.
- W2890465787 cites W2256004185 @default.
- W2890465787 cites W2263111819 @default.
- W2890465787 cites W2336688731 @default.
- W2890465787 cites W2337614246 @default.
- W2890465787 cites W2538548382 @default.
- W2890465787 cites W2549081736 @default.
- W2890465787 cites W2591602864 @default.
- W2890465787 cites W2747273960 @default.
- W2890465787 cites W2747595622 @default.
- W2890465787 cites W2778061314 @default.
- W2890465787 cites W2795524415 @default.
- W2890465787 cites W3125462345 @default.
- W2890465787 cites W4205317898 @default.
- W2890465787 cites W760544245 @default.
- W2890465787 doi "https://doi.org/10.1080/00986445.2018.1505614" @default.
- W2890465787 hasPublicationYear "2018" @default.
- W2890465787 type Work @default.
- W2890465787 sameAs 2890465787 @default.
- W2890465787 citedByCount "26" @default.
- W2890465787 countsByYear W28904657872018 @default.
- W2890465787 countsByYear W28904657872020 @default.
- W2890465787 countsByYear W28904657872021 @default.
- W2890465787 countsByYear W28904657872022 @default.
- W2890465787 countsByYear W28904657872023 @default.
- W2890465787 crossrefType "journal-article" @default.
- W2890465787 hasAuthorship W2890465787A5003316993 @default.
- W2890465787 hasAuthorship W2890465787A5089127302 @default.
- W2890465787 hasConcept C115903868 @default.
- W2890465787 hasConcept C120665830 @default.
- W2890465787 hasConcept C121332964 @default.
- W2890465787 hasConcept C127413603 @default.
- W2890465787 hasConcept C154945302 @default.
- W2890465787 hasConcept C16910744 @default.
- W2890465787 hasConcept C179717631 @default.
- W2890465787 hasConcept C192562407 @default.
- W2890465787 hasConcept C204530211 @default.
- W2890465787 hasConcept C20556612 @default.
- W2890465787 hasConcept C21200559 @default.
- W2890465787 hasConcept C21946209 @default.
- W2890465787 hasConcept C24326235 @default.
- W2890465787 hasConcept C2777115002 @default.
- W2890465787 hasConcept C2779301550 @default.
- W2890465787 hasConcept C2780934509 @default.
- W2890465787 hasConcept C2982854487 @default.
- W2890465787 hasConcept C37728375 @default.
- W2890465787 hasConcept C41008148 @default.
- W2890465787 hasConcept C44154836 @default.
- W2890465787 hasConcept C50517652 @default.
- W2890465787 hasConcept C50644808 @default.
- W2890465787 hasConcept C57879066 @default.
- W2890465787 hasConcept C60908668 @default.
- W2890465787 hasConcept C78519656 @default.
- W2890465787 hasConcept C97355855 @default.
- W2890465787 hasConceptScore W2890465787C115903868 @default.
- W2890465787 hasConceptScore W2890465787C120665830 @default.
- W2890465787 hasConceptScore W2890465787C121332964 @default.
- W2890465787 hasConceptScore W2890465787C127413603 @default.
- W2890465787 hasConceptScore W2890465787C154945302 @default.
- W2890465787 hasConceptScore W2890465787C16910744 @default.
- W2890465787 hasConceptScore W2890465787C179717631 @default.