Matches in SemOpenAlex for { <https://semopenalex.org/work/W2890513149> ?p ?o ?g. }
Showing items 1 to 66 of
66
with 100 items per page.
- W2890513149 abstract "Protein secondary structure prediction is a sub-problem of protein structure prediction. Instead of fully recovering the whole three dimensional structure from amino acid sequence, protein secondary structure prediction only aimed at predicting the local structures such as alpha helices, beta strands and turns for each small segment of a protein. Predicted protein secondary structure can be used for improving fold recognition, ab initial protein prediction, protein motifs prediction and sequence alignment. Protein secondary structure prediction has been extensively studied with machine learning approaches. And in recent years, multiple deep neural network methods have pushed the state-of-art performance of 8-categories accuracy to around 69 percent. Deep neural networks are good at capturing the global information in the whole protein, which are widely believed to be crucial for the prediction. And due to the development of high level neural network libraries, implementing and training neural networks are becoming more and more convenient and efficient. This project focuses on empirical performance comparison of various deep neural network architectures and the effects of hyper-parameters for protein secondary structure prediction. Multiple deep neural network architectures representing the state-of-the-art for secondary structure prediction are implemented using TensorFlow, the leading deep learning platform. In addition, a software environment for performing efficient empirical studies are implemented, which includes network input and parameter control, and training, validation, and test performance monitoring. An extensive amount of experiments have been conducted using popular datasets and benchmarks and generated some useful results. For example, the experimental results show that recurrent layers are useful in improving prediction accuracy, achieving up to 5 percent improvement on 8-category accuracy. This work also shows the trade off between running speed and building speed of the model, and the trade off between running speed and accuracy. As a result, a relatively small size recurrent network have been build and achieved 69.5 percent 8-category accuracy on dataset CB513." @default.
- W2890513149 created "2018-09-27" @default.
- W2890513149 creator A5059274011 @default.
- W2890513149 date "2021-04-11" @default.
- W2890513149 modified "2023-09-23" @default.
- W2890513149 title "Empirical study of deep neural network architectures for protein secondary structure prediction" @default.
- W2890513149 cites W1902237438 @default.
- W2890513149 cites W1947481528 @default.
- W2890513149 cites W2050945397 @default.
- W2890513149 cites W2064675550 @default.
- W2890513149 cites W2107878631 @default.
- W2890513149 cites W2129588870 @default.
- W2890513149 cites W2153153865 @default.
- W2890513149 cites W2158714788 @default.
- W2890513149 cites W2271840356 @default.
- W2890513149 cites W2949117887 @default.
- W2890513149 cites W581956982 @default.
- W2890513149 doi "https://doi.org/10.32469/10355/62043" @default.
- W2890513149 hasPublicationYear "2021" @default.
- W2890513149 type Work @default.
- W2890513149 sameAs 2890513149 @default.
- W2890513149 citedByCount "0" @default.
- W2890513149 crossrefType "dissertation" @default.
- W2890513149 hasAuthorship W2890513149A5059274011 @default.
- W2890513149 hasBestOaLocation W28905131491 @default.
- W2890513149 hasConcept C154945302 @default.
- W2890513149 hasConcept C18051474 @default.
- W2890513149 hasConcept C185592680 @default.
- W2890513149 hasConcept C41008148 @default.
- W2890513149 hasConcept C47701112 @default.
- W2890513149 hasConcept C50644808 @default.
- W2890513149 hasConcept C55493867 @default.
- W2890513149 hasConceptScore W2890513149C154945302 @default.
- W2890513149 hasConceptScore W2890513149C18051474 @default.
- W2890513149 hasConceptScore W2890513149C185592680 @default.
- W2890513149 hasConceptScore W2890513149C41008148 @default.
- W2890513149 hasConceptScore W2890513149C47701112 @default.
- W2890513149 hasConceptScore W2890513149C50644808 @default.
- W2890513149 hasConceptScore W2890513149C55493867 @default.
- W2890513149 hasLocation W28905131491 @default.
- W2890513149 hasOpenAccess W2890513149 @default.
- W2890513149 hasPrimaryLocation W28905131491 @default.
- W2890513149 hasRelatedWork W2135605124 @default.
- W2890513149 hasRelatedWork W2166951513 @default.
- W2890513149 hasRelatedWork W2261130756 @default.
- W2890513149 hasRelatedWork W2359924561 @default.
- W2890513149 hasRelatedWork W2385363987 @default.
- W2890513149 hasRelatedWork W2483042198 @default.
- W2890513149 hasRelatedWork W2486536223 @default.
- W2890513149 hasRelatedWork W2520337371 @default.
- W2890513149 hasRelatedWork W2522631184 @default.
- W2890513149 hasRelatedWork W2789585573 @default.
- W2890513149 hasRelatedWork W2952741290 @default.
- W2890513149 hasRelatedWork W3029210052 @default.
- W2890513149 hasRelatedWork W3044451859 @default.
- W2890513149 hasRelatedWork W3107626189 @default.
- W2890513149 hasRelatedWork W3118588227 @default.
- W2890513149 hasRelatedWork W3198642051 @default.
- W2890513149 hasRelatedWork W3206914416 @default.
- W2890513149 hasRelatedWork W651238688 @default.
- W2890513149 hasRelatedWork W784877270 @default.
- W2890513149 hasRelatedWork W995195246 @default.
- W2890513149 isParatext "false" @default.
- W2890513149 isRetracted "false" @default.
- W2890513149 magId "2890513149" @default.
- W2890513149 workType "dissertation" @default.