Matches in SemOpenAlex for { <https://semopenalex.org/work/W2890514329> ?p ?o ?g. }
- W2890514329 endingPage "e173" @default.
- W2890514329 startingPage "e161" @default.
- W2890514329 abstract "Rationale and Objectives To evaluate a new approach to establish compliance of segmentation tools with the computed tomography volumetry profile of the Quantitative Imaging Biomarker Alliance (QIBA); and determine the statistical exchangeability between real and simulated lesions through an international challenge. Materials and Methods The study used an anthropomorphic phantom with 16 embedded physical lesions and 30 patient cases from the Reference Image Database to Evaluate Therapy Response with pathologically confirmed malignancies. Hybrid datasets were generated by virtually inserting simulated lesions corresponding to physical lesions into the phantom datasets using one projection-domain-based method (Method 1), two image-domain insertion methods (Methods 2 and 3), and simulated lesions corresponding to real lesions into the Reference Image Database to Evaluate Therapy Response dataset (using Method 2). The volumes of the real and simulated lesions were compared based on bias (measured mean volume differences between physical and virtually inserted lesions in phantoms as quantified by segmentation algorithms), repeatability, reproducibility, equivalence (phantom phase), and overall QIBA compliance (phantom and clinical phase). Results For phantom phase, three of eight groups were fully QIBA compliant, and one was marginally compliant. For compliant groups, the estimated biases were −1.8 ± 1.4%, −2.5 ± 1.1%, −3 ± 1%, −1.8 ± 1.5% (±95% confidence interval). No virtual insertion method showed statistical equivalence to physical insertion in bias equivalence testing using Schuirmann's two one-sided test (±5% equivalence margin). Differences in repeatability and reproducibility across physical and simulated lesions were largely comparable (0.1%–16% and 7%–18% differences, respectively). For clinical phase, 7 of 16 groups were QIBA compliant. Conclusion Hybrid datasets yielded conclusions similar to real computed tomography datasets where phantom QIBA compliant was also compliant for hybrid datasets. Some groups deemed compliant for simulated methods, not for physical lesion measurements. The magnitude of this difference was small (<5.4%). While technical performance is not equivalent, they correlate, such that, volumetrically simulated lesions could potentially serve as practical proxies. To evaluate a new approach to establish compliance of segmentation tools with the computed tomography volumetry profile of the Quantitative Imaging Biomarker Alliance (QIBA); and determine the statistical exchangeability between real and simulated lesions through an international challenge. The study used an anthropomorphic phantom with 16 embedded physical lesions and 30 patient cases from the Reference Image Database to Evaluate Therapy Response with pathologically confirmed malignancies. Hybrid datasets were generated by virtually inserting simulated lesions corresponding to physical lesions into the phantom datasets using one projection-domain-based method (Method 1), two image-domain insertion methods (Methods 2 and 3), and simulated lesions corresponding to real lesions into the Reference Image Database to Evaluate Therapy Response dataset (using Method 2). The volumes of the real and simulated lesions were compared based on bias (measured mean volume differences between physical and virtually inserted lesions in phantoms as quantified by segmentation algorithms), repeatability, reproducibility, equivalence (phantom phase), and overall QIBA compliance (phantom and clinical phase). For phantom phase, three of eight groups were fully QIBA compliant, and one was marginally compliant. For compliant groups, the estimated biases were −1.8 ± 1.4%, −2.5 ± 1.1%, −3 ± 1%, −1.8 ± 1.5% (±95% confidence interval). No virtual insertion method showed statistical equivalence to physical insertion in bias equivalence testing using Schuirmann's two one-sided test (±5% equivalence margin). Differences in repeatability and reproducibility across physical and simulated lesions were largely comparable (0.1%–16% and 7%–18% differences, respectively). For clinical phase, 7 of 16 groups were QIBA compliant. Hybrid datasets yielded conclusions similar to real computed tomography datasets where phantom QIBA compliant was also compliant for hybrid datasets. Some groups deemed compliant for simulated methods, not for physical lesion measurements. The magnitude of this difference was small (<5.4%). While technical performance is not equivalent, they correlate, such that, volumetrically simulated lesions could potentially serve as practical proxies." @default.
- W2890514329 created "2018-09-27" @default.
- W2890514329 creator A5006593300 @default.
- W2890514329 creator A5011172657 @default.
- W2890514329 creator A5021555712 @default.
- W2890514329 creator A5021834712 @default.
- W2890514329 creator A5023811620 @default.
- W2890514329 creator A5039535916 @default.
- W2890514329 creator A5073468417 @default.
- W2890514329 creator A5074995495 @default.
- W2890514329 creator A5086399744 @default.
- W2890514329 creator A5091399942 @default.
- W2890514329 date "2019-07-01" @default.
- W2890514329 modified "2023-10-18" @default.
- W2890514329 title "Evaluation of Simulated Lesions as Surrogates to Clinical Lesions for Thoracic CT Volumetry: The Results of an International Challenge" @default.
- W2890514329 cites W1877749330 @default.
- W2890514329 cites W1966648862 @default.
- W2890514329 cites W1971315539 @default.
- W2890514329 cites W1999988848 @default.
- W2890514329 cites W2012800796 @default.
- W2890514329 cites W2019607817 @default.
- W2890514329 cites W2037698344 @default.
- W2890514329 cites W2054841768 @default.
- W2890514329 cites W2075223287 @default.
- W2890514329 cites W2088720324 @default.
- W2890514329 cites W2105779730 @default.
- W2890514329 cites W2125041551 @default.
- W2890514329 cites W2125065061 @default.
- W2890514329 cites W2125656488 @default.
- W2890514329 cites W2130964083 @default.
- W2890514329 cites W2133147483 @default.
- W2890514329 cites W2149923130 @default.
- W2890514329 cites W2156694390 @default.
- W2890514329 cites W2157118246 @default.
- W2890514329 cites W2403226953 @default.
- W2890514329 cites W2594318146 @default.
- W2890514329 cites W2742171954 @default.
- W2890514329 doi "https://doi.org/10.1016/j.acra.2018.07.022" @default.
- W2890514329 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/6414290" @default.
- W2890514329 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/30219290" @default.
- W2890514329 hasPublicationYear "2019" @default.
- W2890514329 type Work @default.
- W2890514329 sameAs 2890514329 @default.
- W2890514329 citedByCount "4" @default.
- W2890514329 countsByYear W28905143292019 @default.
- W2890514329 countsByYear W28905143292020 @default.
- W2890514329 crossrefType "journal-article" @default.
- W2890514329 hasAuthorship W2890514329A5006593300 @default.
- W2890514329 hasAuthorship W2890514329A5011172657 @default.
- W2890514329 hasAuthorship W2890514329A5021555712 @default.
- W2890514329 hasAuthorship W2890514329A5021834712 @default.
- W2890514329 hasAuthorship W2890514329A5023811620 @default.
- W2890514329 hasAuthorship W2890514329A5039535916 @default.
- W2890514329 hasAuthorship W2890514329A5073468417 @default.
- W2890514329 hasAuthorship W2890514329A5074995495 @default.
- W2890514329 hasAuthorship W2890514329A5086399744 @default.
- W2890514329 hasAuthorship W2890514329A5091399942 @default.
- W2890514329 hasBestOaLocation W28905143292 @default.
- W2890514329 hasConcept C104293457 @default.
- W2890514329 hasConcept C105795698 @default.
- W2890514329 hasConcept C118615104 @default.
- W2890514329 hasConcept C136229726 @default.
- W2890514329 hasConcept C153180895 @default.
- W2890514329 hasConcept C154020017 @default.
- W2890514329 hasConcept C154945302 @default.
- W2890514329 hasConcept C2780069185 @default.
- W2890514329 hasConcept C2989005 @default.
- W2890514329 hasConcept C33923547 @default.
- W2890514329 hasConcept C41008148 @default.
- W2890514329 hasConcept C44249647 @default.
- W2890514329 hasConcept C71924100 @default.
- W2890514329 hasConcept C89600930 @default.
- W2890514329 hasConcept C9893847 @default.
- W2890514329 hasConceptScore W2890514329C104293457 @default.
- W2890514329 hasConceptScore W2890514329C105795698 @default.
- W2890514329 hasConceptScore W2890514329C118615104 @default.
- W2890514329 hasConceptScore W2890514329C136229726 @default.
- W2890514329 hasConceptScore W2890514329C153180895 @default.
- W2890514329 hasConceptScore W2890514329C154020017 @default.
- W2890514329 hasConceptScore W2890514329C154945302 @default.
- W2890514329 hasConceptScore W2890514329C2780069185 @default.
- W2890514329 hasConceptScore W2890514329C2989005 @default.
- W2890514329 hasConceptScore W2890514329C33923547 @default.
- W2890514329 hasConceptScore W2890514329C41008148 @default.
- W2890514329 hasConceptScore W2890514329C44249647 @default.
- W2890514329 hasConceptScore W2890514329C71924100 @default.
- W2890514329 hasConceptScore W2890514329C89600930 @default.
- W2890514329 hasConceptScore W2890514329C9893847 @default.
- W2890514329 hasFunder F4320337363 @default.
- W2890514329 hasIssue "7" @default.
- W2890514329 hasLocation W28905143291 @default.
- W2890514329 hasLocation W28905143292 @default.
- W2890514329 hasLocation W28905143293 @default.
- W2890514329 hasLocation W28905143294 @default.
- W2890514329 hasOpenAccess W2890514329 @default.
- W2890514329 hasPrimaryLocation W28905143291 @default.
- W2890514329 hasRelatedWork W117305296 @default.
- W2890514329 hasRelatedWork W1997504100 @default.