Matches in SemOpenAlex for { <https://semopenalex.org/work/W289051718> ?p ?o ?g. }
- W289051718 endingPage "40" @default.
- W289051718 startingPage "28" @default.
- W289051718 abstract "Wireless sensor network (WSN) is one of emerging trends in networking technologies being used for communication purpose in modern life. It has mainly comprised of small sensor nodes (SNs) with limited resources. Individual SNs are connected with each other and make the communication possible. Enhancement in the communication among sensor nodes or Sensor-to-Sink nodes is today’s most prominent objective. In this paper we have surveyed artificial neural network for different QOS parameters of WSN. Artificial neural network (ANN) is very prominent emerging area for WSN applications. Generally, artificial neural networks are classified in supervised learning and unsupervised learning. Unsupervised learning includes algorithms like Hebbian, Winner-take-all, ART, ART1, ART2, counter propagation network etc., while supervised learning includes perceptron model, delta learning rule, error back-propagation etc. ANN helps to achieve the better quality of services for communication in wireless sensor networks at the greater extent. We have summarized the survey of neural networks’ techniques applied for WSN applications so far." @default.
- W289051718 created "2016-06-24" @default.
- W289051718 creator A5013140248 @default.
- W289051718 creator A5091132933 @default.
- W289051718 date "2015-05-20" @default.
- W289051718 modified "2023-10-14" @default.
- W289051718 title "Quality of Services Provisioning in Wireless Sensor Networks using Artificial Neural Network: A Survey" @default.
- W289051718 cites W149388712 @default.
- W289051718 cites W1525528368 @default.
- W289051718 cites W1531857721 @default.
- W289051718 cites W1598539762 @default.
- W289051718 cites W1830792483 @default.
- W289051718 cites W188525937 @default.
- W289051718 cites W1904934201 @default.
- W289051718 cites W1967041227 @default.
- W289051718 cites W1967634886 @default.
- W289051718 cites W1969679257 @default.
- W289051718 cites W1970819564 @default.
- W289051718 cites W1979167798 @default.
- W289051718 cites W1991848143 @default.
- W289051718 cites W2002245178 @default.
- W289051718 cites W2012611887 @default.
- W289051718 cites W2014899371 @default.
- W289051718 cites W2034179412 @default.
- W289051718 cites W2036776027 @default.
- W289051718 cites W2039037394 @default.
- W289051718 cites W2063943306 @default.
- W289051718 cites W2077660553 @default.
- W289051718 cites W2077787046 @default.
- W289051718 cites W2081989110 @default.
- W289051718 cites W2089488939 @default.
- W289051718 cites W2094205592 @default.
- W289051718 cites W2102490836 @default.
- W289051718 cites W2104662049 @default.
- W289051718 cites W2105845337 @default.
- W289051718 cites W2106326053 @default.
- W289051718 cites W2107284464 @default.
- W289051718 cites W2110220278 @default.
- W289051718 cites W2123079742 @default.
- W289051718 cites W2123713863 @default.
- W289051718 cites W2124776405 @default.
- W289051718 cites W2131014969 @default.
- W289051718 cites W2134928807 @default.
- W289051718 cites W2138392055 @default.
- W289051718 cites W2144219012 @default.
- W289051718 cites W2148410230 @default.
- W289051718 cites W2149342919 @default.
- W289051718 cites W2156626839 @default.
- W289051718 cites W2156849365 @default.
- W289051718 cites W2165619944 @default.
- W289051718 cites W2317481871 @default.
- W289051718 cites W2337489677 @default.
- W289051718 cites W2540766396 @default.
- W289051718 cites W2542009976 @default.
- W289051718 cites W2554167127 @default.
- W289051718 cites W3149826930 @default.
- W289051718 cites W600829054 @default.
- W289051718 cites W69885041 @default.
- W289051718 cites W1972892881 @default.
- W289051718 cites W2152477898 @default.
- W289051718 cites W2188415081 @default.
- W289051718 doi "https://doi.org/10.5120/20553-2931" @default.
- W289051718 hasPublicationYear "2015" @default.
- W289051718 type Work @default.
- W289051718 sameAs 289051718 @default.
- W289051718 citedByCount "15" @default.
- W289051718 countsByYear W2890517182016 @default.
- W289051718 countsByYear W2890517182017 @default.
- W289051718 countsByYear W2890517182018 @default.
- W289051718 countsByYear W2890517182019 @default.
- W289051718 countsByYear W2890517182020 @default.
- W289051718 countsByYear W2890517182021 @default.
- W289051718 countsByYear W2890517182022 @default.
- W289051718 countsByYear W2890517182023 @default.
- W289051718 crossrefType "journal-article" @default.
- W289051718 hasAuthorship W289051718A5013140248 @default.
- W289051718 hasAuthorship W289051718A5091132933 @default.
- W289051718 hasBestOaLocation W2890517181 @default.
- W289051718 hasConcept C111472728 @default.
- W289051718 hasConcept C138885662 @default.
- W289051718 hasConcept C154945302 @default.
- W289051718 hasConcept C172191483 @default.
- W289051718 hasConcept C24590314 @default.
- W289051718 hasConcept C2779530757 @default.
- W289051718 hasConcept C31258907 @default.
- W289051718 hasConcept C41008148 @default.
- W289051718 hasConcept C50644808 @default.
- W289051718 hasConcept C555944384 @default.
- W289051718 hasConcept C76155785 @default.
- W289051718 hasConceptScore W289051718C111472728 @default.
- W289051718 hasConceptScore W289051718C138885662 @default.
- W289051718 hasConceptScore W289051718C154945302 @default.
- W289051718 hasConceptScore W289051718C172191483 @default.
- W289051718 hasConceptScore W289051718C24590314 @default.
- W289051718 hasConceptScore W289051718C2779530757 @default.
- W289051718 hasConceptScore W289051718C31258907 @default.
- W289051718 hasConceptScore W289051718C41008148 @default.
- W289051718 hasConceptScore W289051718C50644808 @default.