Matches in SemOpenAlex for { <https://semopenalex.org/work/W2890518931> ?p ?o ?g. }
- W2890518931 endingPage "41" @default.
- W2890518931 startingPage "28" @default.
- W2890518931 abstract "We discuss Bayesian inference for the identification of elastoplastic material parameters. In addition to errors in the stress measurements, which are commonly considered, we furthermore consider errors in the strain measurements. Since a difference between the model and the experimental data may still be present if the data is not contaminated by noise, we also incorporate the possible error of the model itself. The three formulations to describe model uncertainty in this contribution are: (1) a random variable which is taken from a normal distribution with constant parameters, (2) a random variable which is taken from a normal distribution with an input-dependent mean, and (3) a Gaussian random process with a stationary covariance function. Our results show that incorporating model uncertainty often, but not always, improves the results. If the error in the strain is considered as well, the results improve even more." @default.
- W2890518931 created "2018-09-27" @default.
- W2890518931 creator A5036710314 @default.
- W2890518931 creator A5045367144 @default.
- W2890518931 creator A5064221577 @default.
- W2890518931 creator A5081708027 @default.
- W2890518931 date "2019-01-01" @default.
- W2890518931 modified "2023-10-18" @default.
- W2890518931 title "Identifying elastoplastic parameters with Bayes’ theorem considering output error, input error and model uncertainty" @default.
- W2890518931 cites W1964230448 @default.
- W2890518931 cites W1969575045 @default.
- W2890518931 cites W1973333099 @default.
- W2890518931 cites W1982703896 @default.
- W2890518931 cites W1984043151 @default.
- W2890518931 cites W1988160823 @default.
- W2890518931 cites W2006965307 @default.
- W2890518931 cites W2007381608 @default.
- W2890518931 cites W2016788471 @default.
- W2890518931 cites W2025909913 @default.
- W2890518931 cites W2028311936 @default.
- W2890518931 cites W2034664927 @default.
- W2890518931 cites W2040322363 @default.
- W2890518931 cites W2052003145 @default.
- W2890518931 cites W2057512523 @default.
- W2890518931 cites W2061663415 @default.
- W2890518931 cites W2062258832 @default.
- W2890518931 cites W2072028796 @default.
- W2890518931 cites W2073210146 @default.
- W2890518931 cites W2078454401 @default.
- W2890518931 cites W2082030398 @default.
- W2890518931 cites W2087258020 @default.
- W2890518931 cites W2094695332 @default.
- W2890518931 cites W2097311910 @default.
- W2890518931 cites W2103889133 @default.
- W2890518931 cites W2130783497 @default.
- W2890518931 cites W2141884382 @default.
- W2890518931 cites W2149131394 @default.
- W2890518931 cites W2158072605 @default.
- W2890518931 cites W2161920977 @default.
- W2890518931 cites W2166670624 @default.
- W2890518931 cites W2172178958 @default.
- W2890518931 cites W2219657383 @default.
- W2890518931 cites W2302059882 @default.
- W2890518931 cites W2593175946 @default.
- W2890518931 cites W2951231773 @default.
- W2890518931 cites W3106156334 @default.
- W2890518931 cites W3124691892 @default.
- W2890518931 doi "https://doi.org/10.1016/j.probengmech.2018.08.004" @default.
- W2890518931 hasPublicationYear "2019" @default.
- W2890518931 type Work @default.
- W2890518931 sameAs 2890518931 @default.
- W2890518931 citedByCount "63" @default.
- W2890518931 countsByYear W28905189312019 @default.
- W2890518931 countsByYear W28905189312020 @default.
- W2890518931 countsByYear W28905189312021 @default.
- W2890518931 countsByYear W28905189312022 @default.
- W2890518931 countsByYear W28905189312023 @default.
- W2890518931 crossrefType "journal-article" @default.
- W2890518931 hasAuthorship W2890518931A5036710314 @default.
- W2890518931 hasAuthorship W2890518931A5045367144 @default.
- W2890518931 hasAuthorship W2890518931A5064221577 @default.
- W2890518931 hasAuthorship W2890518931A5081708027 @default.
- W2890518931 hasBestOaLocation W28905189312 @default.
- W2890518931 hasConcept C102094743 @default.
- W2890518931 hasConcept C105795698 @default.
- W2890518931 hasConcept C107673813 @default.
- W2890518931 hasConcept C11413529 @default.
- W2890518931 hasConcept C121332964 @default.
- W2890518931 hasConcept C122123141 @default.
- W2890518931 hasConcept C160234255 @default.
- W2890518931 hasConcept C163716315 @default.
- W2890518931 hasConcept C178650346 @default.
- W2890518931 hasConcept C179024874 @default.
- W2890518931 hasConcept C207201462 @default.
- W2890518931 hasConcept C28826006 @default.
- W2890518931 hasConcept C33923547 @default.
- W2890518931 hasConcept C61326573 @default.
- W2890518931 hasConcept C62520636 @default.
- W2890518931 hasConceptScore W2890518931C102094743 @default.
- W2890518931 hasConceptScore W2890518931C105795698 @default.
- W2890518931 hasConceptScore W2890518931C107673813 @default.
- W2890518931 hasConceptScore W2890518931C11413529 @default.
- W2890518931 hasConceptScore W2890518931C121332964 @default.
- W2890518931 hasConceptScore W2890518931C122123141 @default.
- W2890518931 hasConceptScore W2890518931C160234255 @default.
- W2890518931 hasConceptScore W2890518931C163716315 @default.
- W2890518931 hasConceptScore W2890518931C178650346 @default.
- W2890518931 hasConceptScore W2890518931C179024874 @default.
- W2890518931 hasConceptScore W2890518931C207201462 @default.
- W2890518931 hasConceptScore W2890518931C28826006 @default.
- W2890518931 hasConceptScore W2890518931C33923547 @default.
- W2890518931 hasConceptScore W2890518931C61326573 @default.
- W2890518931 hasConceptScore W2890518931C62520636 @default.
- W2890518931 hasFunder F4320310700 @default.
- W2890518931 hasFunder F4320334678 @default.
- W2890518931 hasLocation W28905189311 @default.
- W2890518931 hasLocation W28905189312 @default.
- W2890518931 hasLocation W28905189313 @default.