Matches in SemOpenAlex for { <https://semopenalex.org/work/W2890531392> ?p ?o ?g. }
- W2890531392 endingPage "64" @default.
- W2890531392 startingPage "55" @default.
- W2890531392 abstract "Global inventories of spatial and vertical distribution of soil organic carbon (SOC) stocks are being used in national and global initiatives targeted to mitigate climate change and land degradation impacts. Yet, national level high-resolution estimates of SOC stocks can be useful for improving the accuracy of global SOC inventories. We estimated spatially resolved SOC stocks of surface 0–30 cm and subsurface 30–100 cm layers at a spatial resolution of 30 m in tropical Island, Sri Lanka using a legacy harmonized soil database of 122 soil profiles. The national estimates were compared with two global estimates derived from WISE30sec and SoilGrids250m. The tropical Island (land area = 64,610 km2) occupying 0.03% of global land area showed a considerable heterogeneity in SOC stocks ranging from 2.0–342.5 Mg ha−1 and 2.7–391.7 Mg ha−1 in the surface and subsurface soil layers, respectively. We found, elevation, precipitation and slope angle as main environmental controllers of the spatial distribution of SOC stocks under tropical climate. Incorporating the pedogenic information (derived from soil series level legacy map, soil orders and suborders) with environmental controllers resulted in better regression models of predicting surface (R2 = 0.61) and subsurface (R2 = 0.81) SOC stocks. Geographically weighted regression kriging derived maps of SOC stocks revealed that 0–100 cm soil layer of the tropical Island stored 500 Tg C contributing for 0.04% of the global SOC stocks. The validation results of our estimates showed low Mean Estimation Error (MEE: surface −1.6 and subsurface −1.6 Mg ha−1) and Root Mean Square Error (RMSE: surface 29.5 and subsurface 24.9 Mg ha−1) indicating a low bias and satisfactory predictions. The relative improvement of the prediction accuracy of the SOC stocks of our geospatial estimates in the 0–30 cm layer in comparison to SoilGrids250m and WISE30sec data derived SOC stocks were 51.7% and 35.2%, respectively. The SOC stocks predictions of the 30–100 cm soil layer showed even better relative improvement compared to SoilGrids250m (78.4%) and WISE30sec (57.4%) SOC estimates. Compared to estimates of total SOC stocks resulted in this study, WISE30sec data derived SOC stock maps showed 30% over estimation of the C stock in surface 0–30 cm (332 Tg C) and 41% overestimation in 30–100 cm layer (343 Tg C). The over estimation of total SOC stocks by the SoilGrids250 SOC stocks map for the surface 0–30 cm layer was 122% (567 Tg C) and for the 30–100 cm layer it was 209% (750 Tg C). We conclude that the fusion of legacy soil information of SOC stocks with appropriate environmental covariates and pedogenic information derived from legacy area-class soil maps at national level can produce more accurate inventories of spatial and vertical distribution of SOC stocks. These national inventories have a great potential of upgrading global inventories of SOC stocks." @default.
- W2890531392 created "2018-09-27" @default.
- W2890531392 creator A5066784426 @default.
- W2890531392 creator A5077211941 @default.
- W2890531392 creator A5090481466 @default.
- W2890531392 date "2019-03-01" @default.
- W2890531392 modified "2023-10-17" @default.
- W2890531392 title "National soil organic carbon estimates can improve global estimates" @default.
- W2890531392 cites W1965261480 @default.
- W2890531392 cites W1965463466 @default.
- W2890531392 cites W1965578568 @default.
- W2890531392 cites W1966341515 @default.
- W2890531392 cites W1969543759 @default.
- W2890531392 cites W1972094619 @default.
- W2890531392 cites W1977699688 @default.
- W2890531392 cites W1983759914 @default.
- W2890531392 cites W1990096846 @default.
- W2890531392 cites W1994221921 @default.
- W2890531392 cites W2006184023 @default.
- W2890531392 cites W2008296782 @default.
- W2890531392 cites W2008339952 @default.
- W2890531392 cites W2014802839 @default.
- W2890531392 cites W2019894796 @default.
- W2890531392 cites W2020895775 @default.
- W2890531392 cites W2028575649 @default.
- W2890531392 cites W2035871099 @default.
- W2890531392 cites W2046614289 @default.
- W2890531392 cites W2052289430 @default.
- W2890531392 cites W2053402935 @default.
- W2890531392 cites W2071280210 @default.
- W2890531392 cites W2072281061 @default.
- W2890531392 cites W2076885367 @default.
- W2890531392 cites W2078712779 @default.
- W2890531392 cites W2084744129 @default.
- W2890531392 cites W2087705665 @default.
- W2890531392 cites W2089953116 @default.
- W2890531392 cites W2090602773 @default.
- W2890531392 cites W2091160252 @default.
- W2890531392 cites W2112776483 @default.
- W2890531392 cites W2116602136 @default.
- W2890531392 cites W2125779452 @default.
- W2890531392 cites W2128950127 @default.
- W2890531392 cites W2130560194 @default.
- W2890531392 cites W2135448420 @default.
- W2890531392 cites W2137490014 @default.
- W2890531392 cites W2142405095 @default.
- W2890531392 cites W2152066684 @default.
- W2890531392 cites W2162066644 @default.
- W2890531392 cites W2163996928 @default.
- W2890531392 cites W2191676425 @default.
- W2890531392 cites W2205945645 @default.
- W2890531392 cites W2225702598 @default.
- W2890531392 cites W2253490924 @default.
- W2890531392 cites W2290606251 @default.
- W2890531392 cites W2320762570 @default.
- W2890531392 cites W2346578810 @default.
- W2890531392 cites W2532520249 @default.
- W2890531392 cites W2565354029 @default.
- W2890531392 cites W2567438935 @default.
- W2890531392 cites W2579486704 @default.
- W2890531392 cites W2579904556 @default.
- W2890531392 cites W2588003345 @default.
- W2890531392 cites W2788264769 @default.
- W2890531392 cites W4231864045 @default.
- W2890531392 doi "https://doi.org/10.1016/j.geoderma.2018.09.005" @default.
- W2890531392 hasPublicationYear "2019" @default.
- W2890531392 type Work @default.
- W2890531392 sameAs 2890531392 @default.
- W2890531392 citedByCount "36" @default.
- W2890531392 countsByYear W28905313922018 @default.
- W2890531392 countsByYear W28905313922019 @default.
- W2890531392 countsByYear W28905313922020 @default.
- W2890531392 countsByYear W28905313922021 @default.
- W2890531392 countsByYear W28905313922022 @default.
- W2890531392 countsByYear W28905313922023 @default.
- W2890531392 crossrefType "journal-article" @default.
- W2890531392 hasAuthorship W2890531392A5066784426 @default.
- W2890531392 hasAuthorship W2890531392A5077211941 @default.
- W2890531392 hasAuthorship W2890531392A5090481466 @default.
- W2890531392 hasBestOaLocation W28905313921 @default.
- W2890531392 hasConcept C100970517 @default.
- W2890531392 hasConcept C105795698 @default.
- W2890531392 hasConcept C107054158 @default.
- W2890531392 hasConcept C111368507 @default.
- W2890531392 hasConcept C127313418 @default.
- W2890531392 hasConcept C132651083 @default.
- W2890531392 hasConcept C153294291 @default.
- W2890531392 hasConcept C159390177 @default.
- W2890531392 hasConcept C159750122 @default.
- W2890531392 hasConcept C187320778 @default.
- W2890531392 hasConcept C205649164 @default.
- W2890531392 hasConcept C33923547 @default.
- W2890531392 hasConcept C39432304 @default.
- W2890531392 hasConcept C39464130 @default.
- W2890531392 hasConcept C76886044 @default.
- W2890531392 hasConcept C81692654 @default.
- W2890531392 hasConceptScore W2890531392C100970517 @default.
- W2890531392 hasConceptScore W2890531392C105795698 @default.