Matches in SemOpenAlex for { <https://semopenalex.org/work/W2890543345> ?p ?o ?g. }
- W2890543345 endingPage "97" @default.
- W2890543345 startingPage "81" @default.
- W2890543345 abstract "Feather mites are among the most common and diverse ectosymbionts of birds, yet basic questions such as the nature of their relationship remain largely unanswered. One reason for feather mites being understudied is that their morphological identification is often virtually impossible when using female or young individuals. Even for adult male specimens this task is tedious and requires advanced taxonomic expertise, thus hampering large-scale studies. In addition, molecular-based methods are challenging because the low DNA amounts usually obtained from these tiny mites do not reach the levels required for high-throughput sequencing. This work aims to overcome these issues by using a DNA metabarcoding approach to accurately identify and quantify the feather mite species present in a sample. DNA metabarcoding is a widely used molecular technique that takes advantage of high-throughput sequencing methodologies to assign the taxonomic identity to all the organisms present in a complex sample (i.e., a sample made up of multiple specimens that are hard or impossible to individualise). We present a high-throughput method for feather mite identification using a fragment of the COI gene as marker and Illumina Miseq technology. We tested this method by performing two experiments plus a field test over a total of 11,861 individual mites (5360 of which were also morphologically identified). In the first experiment, we tested the probability of detecting a single feather mite in a heterogeneous pool of non-conspecific individuals. In the second experiment, we made 2 × 2 combinations of species and studied the relationship between the proportion of individuals of a given species in a sample and the proportion of sequences retrieved to test whether DNA metabarcoding can reliably quantify the relative abundance of mites in a sample. Here we also tested the efficacy of degenerate primers (i.e., a mixture of similar primers that differ in one or several bases that are designed to increase the chance of annealing) and investigated the relationship between the number of mismatches and PCR success. Finally, we applied our DNA metabarcoding pipeline to a total of 6501 unidentified and unsorted feather mite individuals sampled from 380 European passerine birds belonging to 10 bird species (field test). Our results show that this proposed pipeline is suitable for correct identification and quantitative estimation of the relative abundance of feather mite species in complex samples, especially when dealing with a moderate number (> 30) of individuals per sample." @default.
- W2890543345 created "2018-09-27" @default.
- W2890543345 creator A5007493113 @default.
- W2890543345 creator A5011730211 @default.
- W2890543345 creator A5016818794 @default.
- W2890543345 creator A5025665839 @default.
- W2890543345 creator A5027442894 @default.
- W2890543345 creator A5032815118 @default.
- W2890543345 creator A5043509230 @default.
- W2890543345 creator A5049294314 @default.
- W2890543345 creator A5071222378 @default.
- W2890543345 date "2018-09-01" @default.
- W2890543345 modified "2023-09-26" @default.
- W2890543345 title "Enabling large-scale feather mite studies: an Illumina DNA metabarcoding pipeline" @default.
- W2890543345 cites W1504564486 @default.
- W2890543345 cites W1791491556 @default.
- W2890543345 cites W1912689425 @default.
- W2890543345 cites W1915735438 @default.
- W2890543345 cites W1922423415 @default.
- W2890543345 cites W1952769846 @default.
- W2890543345 cites W1971430872 @default.
- W2890543345 cites W1973207608 @default.
- W2890543345 cites W1987116762 @default.
- W2890543345 cites W1992648675 @default.
- W2890543345 cites W1997655640 @default.
- W2890543345 cites W1998643818 @default.
- W2890543345 cites W2055043387 @default.
- W2890543345 cites W2061211738 @default.
- W2890543345 cites W2068010299 @default.
- W2890543345 cites W2072970694 @default.
- W2890543345 cites W2073159046 @default.
- W2890543345 cites W2090454769 @default.
- W2890543345 cites W2098869000 @default.
- W2890543345 cites W2099901798 @default.
- W2890543345 cites W2100790534 @default.
- W2890543345 cites W2104846587 @default.
- W2890543345 cites W2106778108 @default.
- W2890543345 cites W2114609794 @default.
- W2890543345 cites W2115852324 @default.
- W2890543345 cites W2122449325 @default.
- W2890543345 cites W2124351063 @default.
- W2890543345 cites W2125537901 @default.
- W2890543345 cites W2128880918 @default.
- W2890543345 cites W2134026622 @default.
- W2890543345 cites W2140722299 @default.
- W2890543345 cites W2142465393 @default.
- W2890543345 cites W2149415648 @default.
- W2890543345 cites W2149507322 @default.
- W2890543345 cites W2150228362 @default.
- W2890543345 cites W2152680348 @default.
- W2890543345 cites W2152885278 @default.
- W2890543345 cites W2165510174 @default.
- W2890543345 cites W2178948654 @default.
- W2890543345 cites W2188651226 @default.
- W2890543345 cites W2317481118 @default.
- W2890543345 cites W2330712633 @default.
- W2890543345 cites W2404022416 @default.
- W2890543345 cites W2413362622 @default.
- W2890543345 cites W2424166825 @default.
- W2890543345 cites W2469548038 @default.
- W2890543345 cites W2503086702 @default.
- W2890543345 cites W2510186555 @default.
- W2890543345 cites W2528625961 @default.
- W2890543345 cites W2580191062 @default.
- W2890543345 cites W2593321701 @default.
- W2890543345 cites W2605571233 @default.
- W2890543345 cites W2606200318 @default.
- W2890543345 cites W2623474729 @default.
- W2890543345 cites W2741650499 @default.
- W2890543345 cites W2749943006 @default.
- W2890543345 cites W2752405285 @default.
- W2890543345 cites W2799681961 @default.
- W2890543345 cites W2949469419 @default.
- W2890543345 cites W4233902414 @default.
- W2890543345 cites W4299506014 @default.
- W2890543345 cites W759193834 @default.
- W2890543345 doi "https://doi.org/10.1007/s10493-018-0288-1" @default.
- W2890543345 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/30178174" @default.
- W2890543345 hasPublicationYear "2018" @default.
- W2890543345 type Work @default.
- W2890543345 sameAs 2890543345 @default.
- W2890543345 citedByCount "9" @default.
- W2890543345 countsByYear W28905433452019 @default.
- W2890543345 countsByYear W28905433452020 @default.
- W2890543345 countsByYear W28905433452021 @default.
- W2890543345 countsByYear W28905433452023 @default.
- W2890543345 crossrefType "journal-article" @default.
- W2890543345 hasAuthorship W2890543345A5007493113 @default.
- W2890543345 hasAuthorship W2890543345A5011730211 @default.
- W2890543345 hasAuthorship W2890543345A5016818794 @default.
- W2890543345 hasAuthorship W2890543345A5025665839 @default.
- W2890543345 hasAuthorship W2890543345A5027442894 @default.
- W2890543345 hasAuthorship W2890543345A5032815118 @default.
- W2890543345 hasAuthorship W2890543345A5043509230 @default.
- W2890543345 hasAuthorship W2890543345A5049294314 @default.
- W2890543345 hasAuthorship W2890543345A5071222378 @default.
- W2890543345 hasConcept C116834253 @default.
- W2890543345 hasConcept C127745971 @default.