Matches in SemOpenAlex for { <https://semopenalex.org/work/W2890559952> ?p ?o ?g. }
Showing items 1 to 96 of
96
with 100 items per page.
- W2890559952 endingPage "105007" @default.
- W2890559952 startingPage "105007" @default.
- W2890559952 abstract "Obstetricians mainly use ultrasound imaging for fetal biometric measurements. However, such measurements are cumbersome. Hence, there is urgent need for automatic biometric estimation. Automated analysis of ultrasound images is complicated owing to the patient-specific, operator-dependent, and machine-specific characteristics of such images.This paper proposes a method for the automatic fetal biometry estimation from 2D ultrasound data through several processes consisting of a specially designed convolutional neural network (CNN) and U-Net for each process. These machine learning techniques take clinicians' decisions, anatomical structures, and the characteristics of ultrasound images into account. The proposed method is divided into three steps: initial abdominal circumference (AC) estimation, AC measurement, and plane acceptance checking.A CNN is used to classify ultrasound images (stomach bubble, amniotic fluid, and umbilical vein), and a Hough transform is used to obtain an initial estimate of the AC. These data are applied to other CNNs to estimate the spine position and bone regions. Then, the obtained information is used to determine the final AC. After determining the AC, a U-Net and a classification CNN are used to check whether the image is suitable for AC measurement. Finally, the efficacy of the proposed method is validated by clinical data.Our method achieved a Dice similarity metric of [Formula: see text] for AC measurement and an accuracy of 87.10% for our acceptance check of the fetal abdominal standard plane." @default.
- W2890559952 created "2018-09-27" @default.
- W2890559952 creator A5005526434 @default.
- W2890559952 creator A5027260329 @default.
- W2890559952 creator A5034037522 @default.
- W2890559952 creator A5034859644 @default.
- W2890559952 creator A5049158887 @default.
- W2890559952 creator A5067896617 @default.
- W2890559952 date "2018-10-22" @default.
- W2890559952 modified "2023-10-13" @default.
- W2890559952 title "Machine-learning-based automatic identification of fetal abdominal circumference from ultrasound images" @default.
- W2890559952 cites W1536555941 @default.
- W2890559952 cites W1979572909 @default.
- W2890559952 cites W1991370230 @default.
- W2890559952 cites W1994529906 @default.
- W2890559952 cites W2009953720 @default.
- W2890559952 cites W2020507890 @default.
- W2890559952 cites W2048521493 @default.
- W2890559952 cites W2054181520 @default.
- W2890559952 cites W2061715187 @default.
- W2890559952 cites W2081410396 @default.
- W2890559952 cites W2120023383 @default.
- W2890559952 cites W2130094715 @default.
- W2890559952 cites W2139375613 @default.
- W2890559952 cites W2139442740 @default.
- W2890559952 cites W2147800946 @default.
- W2890559952 cites W2153360856 @default.
- W2890559952 cites W2156950586 @default.
- W2890559952 cites W2163273992 @default.
- W2890559952 cites W2324559400 @default.
- W2890559952 cites W2766759990 @default.
- W2890559952 cites W2919115771 @default.
- W2890559952 doi "https://doi.org/10.1088/1361-6579/aae255" @default.
- W2890559952 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/30226815" @default.
- W2890559952 hasPublicationYear "2018" @default.
- W2890559952 type Work @default.
- W2890559952 sameAs 2890559952 @default.
- W2890559952 citedByCount "37" @default.
- W2890559952 countsByYear W28905599522019 @default.
- W2890559952 countsByYear W28905599522020 @default.
- W2890559952 countsByYear W28905599522021 @default.
- W2890559952 countsByYear W28905599522022 @default.
- W2890559952 countsByYear W28905599522023 @default.
- W2890559952 crossrefType "journal-article" @default.
- W2890559952 hasAuthorship W2890559952A5005526434 @default.
- W2890559952 hasAuthorship W2890559952A5027260329 @default.
- W2890559952 hasAuthorship W2890559952A5034037522 @default.
- W2890559952 hasAuthorship W2890559952A5034859644 @default.
- W2890559952 hasAuthorship W2890559952A5049158887 @default.
- W2890559952 hasAuthorship W2890559952A5067896617 @default.
- W2890559952 hasConcept C108583219 @default.
- W2890559952 hasConcept C115961682 @default.
- W2890559952 hasConcept C126838900 @default.
- W2890559952 hasConcept C143753070 @default.
- W2890559952 hasConcept C153180895 @default.
- W2890559952 hasConcept C154945302 @default.
- W2890559952 hasConcept C184297639 @default.
- W2890559952 hasConcept C200518788 @default.
- W2890559952 hasConcept C31972630 @default.
- W2890559952 hasConcept C41008148 @default.
- W2890559952 hasConcept C71924100 @default.
- W2890559952 hasConcept C81363708 @default.
- W2890559952 hasConceptScore W2890559952C108583219 @default.
- W2890559952 hasConceptScore W2890559952C115961682 @default.
- W2890559952 hasConceptScore W2890559952C126838900 @default.
- W2890559952 hasConceptScore W2890559952C143753070 @default.
- W2890559952 hasConceptScore W2890559952C153180895 @default.
- W2890559952 hasConceptScore W2890559952C154945302 @default.
- W2890559952 hasConceptScore W2890559952C184297639 @default.
- W2890559952 hasConceptScore W2890559952C200518788 @default.
- W2890559952 hasConceptScore W2890559952C31972630 @default.
- W2890559952 hasConceptScore W2890559952C41008148 @default.
- W2890559952 hasConceptScore W2890559952C71924100 @default.
- W2890559952 hasConceptScore W2890559952C81363708 @default.
- W2890559952 hasIssue "10" @default.
- W2890559952 hasLocation W28905599521 @default.
- W2890559952 hasLocation W28905599522 @default.
- W2890559952 hasOpenAccess W2890559952 @default.
- W2890559952 hasPrimaryLocation W28905599521 @default.
- W2890559952 hasRelatedWork W2091533880 @default.
- W2890559952 hasRelatedWork W2374020915 @default.
- W2890559952 hasRelatedWork W2731899572 @default.
- W2890559952 hasRelatedWork W2732542196 @default.
- W2890559952 hasRelatedWork W2738221750 @default.
- W2890559952 hasRelatedWork W3133861977 @default.
- W2890559952 hasRelatedWork W3156786002 @default.
- W2890559952 hasRelatedWork W3186111093 @default.
- W2890559952 hasRelatedWork W4200173597 @default.
- W2890559952 hasRelatedWork W2596524021 @default.
- W2890559952 hasVolume "39" @default.
- W2890559952 isParatext "false" @default.
- W2890559952 isRetracted "false" @default.
- W2890559952 magId "2890559952" @default.
- W2890559952 workType "article" @default.