Matches in SemOpenAlex for { <https://semopenalex.org/work/W2890561851> ?p ?o ?g. }
- W2890561851 endingPage "22" @default.
- W2890561851 startingPage "15" @default.
- W2890561851 abstract "Mobile crowd sensing (MCS) is a relatively new paradigm for collecting real-time and location-dependent urban sensing data. Given its applications, it is crucial to optimize the MCS process with the objective of maximizing the sensing quality and minimizing the sensing cost. While earlier studies mainly tackle this issue by designing different combinatorial optimization algorithms, there is a new trend to further optimize MCS by integrating learning techniques to extract knowledge, such as participants’ behavioral patterns or sensing data correlation. In this paper, we perform an extensive literature review of learning-assisted optimization approaches in MCS. Specifically, from the perspective of the participant and the task, we organize the existing work into a conceptual framework, present different learning and optimization methods, and describe their evaluation. Furthermore, we discuss how different techniques can be combined to form a complete solution. In the end, we point out existing limitations, which can inform and guide future research directions." @default.
- W2890561851 created "2018-09-27" @default.
- W2890561851 creator A5023644163 @default.
- W2890561851 creator A5040775204 @default.
- W2890561851 creator A5045729966 @default.
- W2890561851 creator A5046354027 @default.
- W2890561851 creator A5055336632 @default.
- W2890561851 creator A5061704516 @default.
- W2890561851 creator A5087686703 @default.
- W2890561851 date "2019-01-01" @default.
- W2890561851 modified "2023-09-27" @default.
- W2890561851 title "Learning-Assisted Optimization in Mobile Crowd Sensing: A Survey" @default.
- W2890561851 cites W1529158540 @default.
- W2890561851 cites W1541280084 @default.
- W2890561851 cites W1550742363 @default.
- W2890561851 cites W1615020194 @default.
- W2890561851 cites W1971824319 @default.
- W2890561851 cites W1976535029 @default.
- W2890561851 cites W1977093441 @default.
- W2890561851 cites W1980701825 @default.
- W2890561851 cites W1992766323 @default.
- W2890561851 cites W1994500462 @default.
- W2890561851 cites W1999417451 @default.
- W2890561851 cites W2006974280 @default.
- W2890561851 cites W2013976210 @default.
- W2890561851 cites W2014480560 @default.
- W2890561851 cites W2016447307 @default.
- W2890561851 cites W2024165968 @default.
- W2890561851 cites W2025948280 @default.
- W2890561851 cites W2034771068 @default.
- W2890561851 cites W2045487859 @default.
- W2890561851 cites W2047963480 @default.
- W2890561851 cites W2057041225 @default.
- W2890561851 cites W2060118520 @default.
- W2890561851 cites W2060122457 @default.
- W2890561851 cites W2074050720 @default.
- W2890561851 cites W2075816638 @default.
- W2890561851 cites W2094634352 @default.
- W2890561851 cites W2104887187 @default.
- W2890561851 cites W2106956101 @default.
- W2890561851 cites W2117788706 @default.
- W2890561851 cites W2125826911 @default.
- W2890561851 cites W2127347346 @default.
- W2890561851 cites W2128896537 @default.
- W2890561851 cites W2131222034 @default.
- W2890561851 cites W2155189155 @default.
- W2890561851 cites W2199991380 @default.
- W2890561851 cites W2289648086 @default.
- W2890561851 cites W2293794854 @default.
- W2890561851 cites W2412667021 @default.
- W2890561851 cites W2439965388 @default.
- W2890561851 cites W2443200919 @default.
- W2890561851 cites W2462345467 @default.
- W2890561851 cites W2469266040 @default.
- W2890561851 cites W2473808492 @default.
- W2890561851 cites W2495515310 @default.
- W2890561851 cites W2514913642 @default.
- W2890561851 cites W2515696650 @default.
- W2890561851 cites W2517972157 @default.
- W2890561851 cites W2547925235 @default.
- W2890561851 cites W2558570031 @default.
- W2890561851 cites W2582377923 @default.
- W2890561851 cites W2588075546 @default.
- W2890561851 cites W2606709877 @default.
- W2890561851 cites W2613162388 @default.
- W2890561851 cites W2727254102 @default.
- W2890561851 cites W2734892543 @default.
- W2890561851 cites W2735739238 @default.
- W2890561851 cites W2750608884 @default.
- W2890561851 cites W2754141758 @default.
- W2890561851 cites W2760893072 @default.
- W2890561851 cites W2763801300 @default.
- W2890561851 cites W2765580447 @default.
- W2890561851 cites W2792960831 @default.
- W2890561851 cites W2803889862 @default.
- W2890561851 cites W2963044698 @default.
- W2890561851 cites W3137248573 @default.
- W2890561851 cites W4246122471 @default.
- W2890561851 cites W4253271685 @default.
- W2890561851 doi "https://doi.org/10.1109/tii.2018.2868703" @default.
- W2890561851 hasPublicationYear "2019" @default.
- W2890561851 type Work @default.
- W2890561851 sameAs 2890561851 @default.
- W2890561851 citedByCount "25" @default.
- W2890561851 countsByYear W28905618512019 @default.
- W2890561851 countsByYear W28905618512020 @default.
- W2890561851 countsByYear W28905618512021 @default.
- W2890561851 countsByYear W28905618512022 @default.
- W2890561851 countsByYear W28905618512023 @default.
- W2890561851 crossrefType "journal-article" @default.
- W2890561851 hasAuthorship W2890561851A5023644163 @default.
- W2890561851 hasAuthorship W2890561851A5040775204 @default.
- W2890561851 hasAuthorship W2890561851A5045729966 @default.
- W2890561851 hasAuthorship W2890561851A5046354027 @default.
- W2890561851 hasAuthorship W2890561851A5055336632 @default.
- W2890561851 hasAuthorship W2890561851A5061704516 @default.
- W2890561851 hasAuthorship W2890561851A5087686703 @default.
- W2890561851 hasBestOaLocation W28905618512 @default.