Matches in SemOpenAlex for { <https://semopenalex.org/work/W2890562462> ?p ?o ?g. }
Showing items 1 to 79 of
79
with 100 items per page.
- W2890562462 abstract "Text sentiment analysis is used to find out how much the public’s appreciation and preferences for specific events or objects. In order to effectively extract the deep emotional features of words, this paper proposes two sentiment analysis methods, which are emotion adjustment method based on semantic similarity and skip-gram model. In these two methods, word vectors containing semantic information obtained from Word2vec and emotional seeds are used to adjust the sentiment orientation of the words so that word vectors can trained both the semantic information and the sentiment contents. And the TF-IDF method is used to calculate the word’s weight in the text, the vector of the whole text is represented by adding the weighted word vectors. Experiments show that the emotion-adjusted word vector improves the accuracy of the text sentiment analysis more effectively than the traditional method, and proves the validity of these two methods in the sentiment analysis task. At the same time, the emotion adjustment method based on skip-gram model is more effective than the method based on semantic similarity." @default.
- W2890562462 created "2018-09-27" @default.
- W2890562462 creator A5014714438 @default.
- W2890562462 creator A5017905330 @default.
- W2890562462 creator A5052391266 @default.
- W2890562462 creator A5086533374 @default.
- W2890562462 date "2018-01-01" @default.
- W2890562462 modified "2023-09-27" @default.
- W2890562462 title "Text Sentiment Analysis Based on Emotion Adjustment" @default.
- W2890562462 cites W2101196063 @default.
- W2890562462 cites W2106346128 @default.
- W2890562462 cites W2155328222 @default.
- W2890562462 cites W2166706824 @default.
- W2890562462 cites W2250539671 @default.
- W2890562462 cites W2250962852 @default.
- W2890562462 cites W2787893582 @default.
- W2890562462 doi "https://doi.org/10.1007/978-981-13-2206-8_5" @default.
- W2890562462 hasPublicationYear "2018" @default.
- W2890562462 type Work @default.
- W2890562462 sameAs 2890562462 @default.
- W2890562462 citedByCount "0" @default.
- W2890562462 crossrefType "book-chapter" @default.
- W2890562462 hasAuthorship W2890562462A5014714438 @default.
- W2890562462 hasAuthorship W2890562462A5017905330 @default.
- W2890562462 hasAuthorship W2890562462A5052391266 @default.
- W2890562462 hasAuthorship W2890562462A5086533374 @default.
- W2890562462 hasConcept C103278499 @default.
- W2890562462 hasConcept C115961682 @default.
- W2890562462 hasConcept C130318100 @default.
- W2890562462 hasConcept C154945302 @default.
- W2890562462 hasConcept C204321447 @default.
- W2890562462 hasConcept C23123220 @default.
- W2890562462 hasConcept C2524010 @default.
- W2890562462 hasConcept C2776461190 @default.
- W2890562462 hasConcept C33923547 @default.
- W2890562462 hasConcept C41008148 @default.
- W2890562462 hasConcept C41608201 @default.
- W2890562462 hasConcept C66402592 @default.
- W2890562462 hasConcept C90805587 @default.
- W2890562462 hasConceptScore W2890562462C103278499 @default.
- W2890562462 hasConceptScore W2890562462C115961682 @default.
- W2890562462 hasConceptScore W2890562462C130318100 @default.
- W2890562462 hasConceptScore W2890562462C154945302 @default.
- W2890562462 hasConceptScore W2890562462C204321447 @default.
- W2890562462 hasConceptScore W2890562462C23123220 @default.
- W2890562462 hasConceptScore W2890562462C2524010 @default.
- W2890562462 hasConceptScore W2890562462C2776461190 @default.
- W2890562462 hasConceptScore W2890562462C33923547 @default.
- W2890562462 hasConceptScore W2890562462C41008148 @default.
- W2890562462 hasConceptScore W2890562462C41608201 @default.
- W2890562462 hasConceptScore W2890562462C66402592 @default.
- W2890562462 hasConceptScore W2890562462C90805587 @default.
- W2890562462 hasLocation W28905624621 @default.
- W2890562462 hasOpenAccess W2890562462 @default.
- W2890562462 hasPrimaryLocation W28905624621 @default.
- W2890562462 hasRelatedWork W2270208168 @default.
- W2890562462 hasRelatedWork W2758419901 @default.
- W2890562462 hasRelatedWork W2766246554 @default.
- W2890562462 hasRelatedWork W2776249353 @default.
- W2890562462 hasRelatedWork W2803646846 @default.
- W2890562462 hasRelatedWork W2892326583 @default.
- W2890562462 hasRelatedWork W2894707301 @default.
- W2890562462 hasRelatedWork W2899959903 @default.
- W2890562462 hasRelatedWork W2994443510 @default.
- W2890562462 hasRelatedWork W3043529747 @default.
- W2890562462 hasRelatedWork W3199056573 @default.
- W2890562462 hasRelatedWork W2833807811 @default.
- W2890562462 hasRelatedWork W2925797843 @default.
- W2890562462 hasRelatedWork W2961116482 @default.
- W2890562462 hasRelatedWork W2967976369 @default.
- W2890562462 hasRelatedWork W2968772542 @default.
- W2890562462 hasRelatedWork W2988794846 @default.
- W2890562462 hasRelatedWork W3137296343 @default.
- W2890562462 hasRelatedWork W3139517779 @default.
- W2890562462 hasRelatedWork W3179207246 @default.
- W2890562462 isParatext "false" @default.
- W2890562462 isRetracted "false" @default.
- W2890562462 magId "2890562462" @default.
- W2890562462 workType "book-chapter" @default.