Matches in SemOpenAlex for { <https://semopenalex.org/work/W2890570523> ?p ?o ?g. }
- W2890570523 endingPage "e0204071" @default.
- W2890570523 startingPage "e0204071" @default.
- W2890570523 abstract "Obesity is increasingly prevalent and associated with increased risk of developing type 2 diabetes, cardiovascular diseases, and cancer. Magnetic resonance imaging (MRI) is an accurate method for determination of body fat volume and distribution. However, quantifying body fat from numerous MRI slices is tedious and time-consuming. Here we developed a deep learning-based method for measuring visceral and subcutaneous fat in the abdominal region of mice. Congenic mice only differ from C57BL/6 (B6) Apoe knockout (Apoe-/-) mice in chromosome 9 that is replaced by C3H/HeJ genome. Male congenic mice had lighter body weight than B6-Apoe-/- mice after being fed 14 weeks of Western diet. Axial and coronal T1-weighted sequencing at 1-mm-thickness and 1-mm-gap was acquired with a 7T Bruker ClinScan scanner. A deep learning approach was developed for segmenting visceral and subcutaneous fat based on the U-net architecture made publicly available through the open-source ANTsRNet library—a growing repository of well-known neural networks. The volumes of subcutaneous and visceral fat measured through our approach were highly comparable with those from manual measurements. The Dice score, root-mean-square error (RMSE), and correlation analysis demonstrated the similarity between two methods in quantifying visceral and subcutaneous fat. Analysis with the automated method showed significant reductions in volumes of visceral and subcutaneous fat but not non-fat tissues in congenic mice compared to B6 mice. These results demonstrate the accuracy of deep learning in quantification of abdominal fat and its significance in determining body weight." @default.
- W2890570523 created "2018-09-27" @default.
- W2890570523 creator A5003481480 @default.
- W2890570523 creator A5035878404 @default.
- W2890570523 creator A5051461278 @default.
- W2890570523 creator A5073296164 @default.
- W2890570523 creator A5083316571 @default.
- W2890570523 creator A5091005850 @default.
- W2890570523 date "2018-09-20" @default.
- W2890570523 modified "2023-10-14" @default.
- W2890570523 title "Deep learning-based quantification of abdominal fat on magnetic resonance images" @default.
- W2890570523 cites W1898093098 @default.
- W2890570523 cites W1899329334 @default.
- W2890570523 cites W1967251218 @default.
- W2890570523 cites W1975544025 @default.
- W2890570523 cites W1979567034 @default.
- W2890570523 cites W2015513982 @default.
- W2890570523 cites W2023181043 @default.
- W2890570523 cites W2029046331 @default.
- W2890570523 cites W2036313311 @default.
- W2890570523 cites W2097797646 @default.
- W2890570523 cites W2117340355 @default.
- W2890570523 cites W2118409721 @default.
- W2890570523 cites W2123168196 @default.
- W2890570523 cites W2127890285 @default.
- W2890570523 cites W2137618921 @default.
- W2890570523 cites W2142214184 @default.
- W2890570523 cites W2163658012 @default.
- W2890570523 cites W2167279371 @default.
- W2890570523 cites W2171471634 @default.
- W2890570523 cites W2171807583 @default.
- W2890570523 cites W2258138284 @default.
- W2890570523 cites W2557417496 @default.
- W2890570523 cites W2592929672 @default.
- W2890570523 cites W2605606367 @default.
- W2890570523 cites W2786974903 @default.
- W2890570523 cites W2794518994 @default.
- W2890570523 cites W2794990008 @default.
- W2890570523 cites W2797624406 @default.
- W2890570523 cites W2915108784 @default.
- W2890570523 doi "https://doi.org/10.1371/journal.pone.0204071" @default.
- W2890570523 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/6147491" @default.
- W2890570523 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/30235253" @default.
- W2890570523 hasPublicationYear "2018" @default.
- W2890570523 type Work @default.
- W2890570523 sameAs 2890570523 @default.
- W2890570523 citedByCount "10" @default.
- W2890570523 countsByYear W28905705232018 @default.
- W2890570523 countsByYear W28905705232019 @default.
- W2890570523 countsByYear W28905705232020 @default.
- W2890570523 countsByYear W28905705232021 @default.
- W2890570523 countsByYear W28905705232022 @default.
- W2890570523 countsByYear W28905705232023 @default.
- W2890570523 crossrefType "journal-article" @default.
- W2890570523 hasAuthorship W2890570523A5003481480 @default.
- W2890570523 hasAuthorship W2890570523A5035878404 @default.
- W2890570523 hasAuthorship W2890570523A5051461278 @default.
- W2890570523 hasAuthorship W2890570523A5073296164 @default.
- W2890570523 hasAuthorship W2890570523A5083316571 @default.
- W2890570523 hasAuthorship W2890570523A5091005850 @default.
- W2890570523 hasBestOaLocation W28905705231 @default.
- W2890570523 hasConcept C104317684 @default.
- W2890570523 hasConcept C126838900 @default.
- W2890570523 hasConcept C142724271 @default.
- W2890570523 hasConcept C143409427 @default.
- W2890570523 hasConcept C2779134260 @default.
- W2890570523 hasConcept C2989005 @default.
- W2890570523 hasConcept C54355233 @default.
- W2890570523 hasConcept C57089818 @default.
- W2890570523 hasConcept C71924100 @default.
- W2890570523 hasConcept C84951073 @default.
- W2890570523 hasConcept C86803240 @default.
- W2890570523 hasConceptScore W2890570523C104317684 @default.
- W2890570523 hasConceptScore W2890570523C126838900 @default.
- W2890570523 hasConceptScore W2890570523C142724271 @default.
- W2890570523 hasConceptScore W2890570523C143409427 @default.
- W2890570523 hasConceptScore W2890570523C2779134260 @default.
- W2890570523 hasConceptScore W2890570523C2989005 @default.
- W2890570523 hasConceptScore W2890570523C54355233 @default.
- W2890570523 hasConceptScore W2890570523C57089818 @default.
- W2890570523 hasConceptScore W2890570523C71924100 @default.
- W2890570523 hasConceptScore W2890570523C84951073 @default.
- W2890570523 hasConceptScore W2890570523C86803240 @default.
- W2890570523 hasFunder F4320314504 @default.
- W2890570523 hasFunder F4320332161 @default.
- W2890570523 hasFunder F4320337357 @default.
- W2890570523 hasIssue "9" @default.
- W2890570523 hasLocation W28905705231 @default.
- W2890570523 hasLocation W28905705232 @default.
- W2890570523 hasLocation W28905705233 @default.
- W2890570523 hasLocation W28905705234 @default.
- W2890570523 hasLocation W28905705235 @default.
- W2890570523 hasOpenAccess W2890570523 @default.
- W2890570523 hasPrimaryLocation W28905705231 @default.
- W2890570523 hasRelatedWork W2028246670 @default.
- W2890570523 hasRelatedWork W2035608966 @default.
- W2890570523 hasRelatedWork W2036317449 @default.
- W2890570523 hasRelatedWork W2084573604 @default.