Matches in SemOpenAlex for { <https://semopenalex.org/work/W2890573709> ?p ?o ?g. }
Showing items 1 to 84 of
84
with 100 items per page.
- W2890573709 abstract "This article presents an approach for the simulation of machining operations through Artificial Intelligence, which guarantees an automatic learning of the distinctive features in the processes of metal cutting. In the research, an Artificial Neural Network was designed, which establishes the relationships between the parameters of cutting regime and the technological indexes of machining, based on the information generated in real experimentation. For the conception of suitable cutting strategies, the following magnitudes were considered for the input of the model: lubrication regime, cutting speed, feed rate and machining time; which determined the behavior of the cutting forces in the turning of the AISI 316L steel, in order to obtain the cutting powers that define the specific energy consumption. Several designs were considered according to the features of Multi-Layer Perceptron architecture and the selected model was evaluated according to the mean square error and the regression coefficient R2, reflecting high precision in the approximation. The deviation for the error made in the estimation of the cutting force values represents approximately 2% of the average value. These results showed a good level of reliability in the prediction of energy consumption under various machining conditions, in order to adopt relevant saving measures." @default.
- W2890573709 created "2018-09-27" @default.
- W2890573709 creator A5004730349 @default.
- W2890573709 creator A5028723750 @default.
- W2890573709 creator A5085063592 @default.
- W2890573709 date "2018-01-01" @default.
- W2890573709 modified "2023-10-06" @default.
- W2890573709 title "Predictive Model for Specific Energy Consumption in the Turning of AISI 316L Steel" @default.
- W2890573709 cites W1972362576 @default.
- W2890573709 cites W1999744980 @default.
- W2890573709 cites W2003874761 @default.
- W2890573709 cites W2013715479 @default.
- W2890573709 cites W2030451638 @default.
- W2890573709 cites W2085585731 @default.
- W2890573709 cites W2112013487 @default.
- W2890573709 cites W2297478401 @default.
- W2890573709 cites W2566048193 @default.
- W2890573709 cites W2574685592 @default.
- W2890573709 doi "https://doi.org/10.1007/978-3-030-01132-1_6" @default.
- W2890573709 hasPublicationYear "2018" @default.
- W2890573709 type Work @default.
- W2890573709 sameAs 2890573709 @default.
- W2890573709 citedByCount "2" @default.
- W2890573709 countsByYear W28905737092020 @default.
- W2890573709 countsByYear W28905737092021 @default.
- W2890573709 crossrefType "book-chapter" @default.
- W2890573709 hasAuthorship W2890573709A5004730349 @default.
- W2890573709 hasAuthorship W2890573709A5028723750 @default.
- W2890573709 hasAuthorship W2890573709A5085063592 @default.
- W2890573709 hasConcept C105795698 @default.
- W2890573709 hasConcept C119599485 @default.
- W2890573709 hasConcept C127413603 @default.
- W2890573709 hasConcept C154945302 @default.
- W2890573709 hasConcept C179717631 @default.
- W2890573709 hasConcept C184608416 @default.
- W2890573709 hasConcept C186370098 @default.
- W2890573709 hasConcept C2780165032 @default.
- W2890573709 hasConcept C33923547 @default.
- W2890573709 hasConcept C41008148 @default.
- W2890573709 hasConcept C50644808 @default.
- W2890573709 hasConcept C523214423 @default.
- W2890573709 hasConcept C60908668 @default.
- W2890573709 hasConcept C78519656 @default.
- W2890573709 hasConceptScore W2890573709C105795698 @default.
- W2890573709 hasConceptScore W2890573709C119599485 @default.
- W2890573709 hasConceptScore W2890573709C127413603 @default.
- W2890573709 hasConceptScore W2890573709C154945302 @default.
- W2890573709 hasConceptScore W2890573709C179717631 @default.
- W2890573709 hasConceptScore W2890573709C184608416 @default.
- W2890573709 hasConceptScore W2890573709C186370098 @default.
- W2890573709 hasConceptScore W2890573709C2780165032 @default.
- W2890573709 hasConceptScore W2890573709C33923547 @default.
- W2890573709 hasConceptScore W2890573709C41008148 @default.
- W2890573709 hasConceptScore W2890573709C50644808 @default.
- W2890573709 hasConceptScore W2890573709C523214423 @default.
- W2890573709 hasConceptScore W2890573709C60908668 @default.
- W2890573709 hasConceptScore W2890573709C78519656 @default.
- W2890573709 hasLocation W28905737091 @default.
- W2890573709 hasOpenAccess W2890573709 @default.
- W2890573709 hasPrimaryLocation W28905737091 @default.
- W2890573709 hasRelatedWork W2018816054 @default.
- W2890573709 hasRelatedWork W2026115365 @default.
- W2890573709 hasRelatedWork W2050801256 @default.
- W2890573709 hasRelatedWork W2081106685 @default.
- W2890573709 hasRelatedWork W2184494293 @default.
- W2890573709 hasRelatedWork W2347579617 @default.
- W2890573709 hasRelatedWork W2469768694 @default.
- W2890573709 hasRelatedWork W2536390935 @default.
- W2890573709 hasRelatedWork W2556469306 @default.
- W2890573709 hasRelatedWork W26789176 @default.
- W2890573709 hasRelatedWork W2789500785 @default.
- W2890573709 hasRelatedWork W2811380078 @default.
- W2890573709 hasRelatedWork W2888567229 @default.
- W2890573709 hasRelatedWork W2911554091 @default.
- W2890573709 hasRelatedWork W2952364123 @default.
- W2890573709 hasRelatedWork W2989665715 @default.
- W2890573709 hasRelatedWork W2993889190 @default.
- W2890573709 hasRelatedWork W3032199828 @default.
- W2890573709 hasRelatedWork W2187361685 @default.
- W2890573709 hasRelatedWork W2291898754 @default.
- W2890573709 isParatext "false" @default.
- W2890573709 isRetracted "false" @default.
- W2890573709 magId "2890573709" @default.
- W2890573709 workType "book-chapter" @default.