Matches in SemOpenAlex for { <https://semopenalex.org/work/W2890593601> ?p ?o ?g. }
Showing items 1 to 90 of
90
with 100 items per page.
- W2890593601 abstract "In this work, we aim at classifying emphysema in computed tomography (CT) images of lungs. Most previous works are limited to extracting low-level features or mid-level features without enough high-level information. Moreover, these approaches do not take the characteristics (scales) of different emphysema into account, which are crucial for feature extraction. In contrast to previous works, we propose a novel deep learning method based on multiscale deep convolutional neural networks. There are three contributions for this paper. First, we propose to use a base residual network with 20 layers to extract more high-level information. To the best of our knowledge, this is the first deep learning method for classification of emphysema. Second, we incorporate multi-scale information into our deep neural networks so as to take full consideration of the characteristics of different emphysema. Finally, we established a high-quality emphysema dataset which contains 91 high-resolution computed tomography (HRCT) volumes, annotated manually by two experienced radiologists and checked by one experienced chest radiologist. A 92.68% classification accuracy is achieved on this dataset. The results show that (1) the multi-scale method is highly effective in comparison to the single scale setting; (2) the proposed approach is superior to the state-of-the-art techniques." @default.
- W2890593601 created "2018-09-27" @default.
- W2890593601 creator A5010434486 @default.
- W2890593601 creator A5027095952 @default.
- W2890593601 creator A5044216245 @default.
- W2890593601 creator A5057452864 @default.
- W2890593601 creator A5058380236 @default.
- W2890593601 creator A5077363155 @default.
- W2890593601 creator A5086851360 @default.
- W2890593601 creator A5090814258 @default.
- W2890593601 creator A5090836703 @default.
- W2890593601 date "2018-10-01" @default.
- W2890593601 modified "2023-09-23" @default.
- W2890593601 title "Classification of Pulmonary Emphysema in CT Images Based on Multi-Scale Deep Convolutional Neural Networks" @default.
- W2890593601 cites W1736409832 @default.
- W2890593601 cites W2101891472 @default.
- W2890593601 cites W2111548171 @default.
- W2890593601 cites W2132826329 @default.
- W2890593601 cites W2323929895 @default.
- W2890593601 doi "https://doi.org/10.1109/icip.2018.8451514" @default.
- W2890593601 hasPublicationYear "2018" @default.
- W2890593601 type Work @default.
- W2890593601 sameAs 2890593601 @default.
- W2890593601 citedByCount "4" @default.
- W2890593601 countsByYear W28905936012019 @default.
- W2890593601 countsByYear W28905936012021 @default.
- W2890593601 countsByYear W28905936012022 @default.
- W2890593601 crossrefType "proceedings-article" @default.
- W2890593601 hasAuthorship W2890593601A5010434486 @default.
- W2890593601 hasAuthorship W2890593601A5027095952 @default.
- W2890593601 hasAuthorship W2890593601A5044216245 @default.
- W2890593601 hasAuthorship W2890593601A5057452864 @default.
- W2890593601 hasAuthorship W2890593601A5058380236 @default.
- W2890593601 hasAuthorship W2890593601A5077363155 @default.
- W2890593601 hasAuthorship W2890593601A5086851360 @default.
- W2890593601 hasAuthorship W2890593601A5090814258 @default.
- W2890593601 hasAuthorship W2890593601A5090836703 @default.
- W2890593601 hasConcept C108583219 @default.
- W2890593601 hasConcept C11413529 @default.
- W2890593601 hasConcept C126838900 @default.
- W2890593601 hasConcept C138885662 @default.
- W2890593601 hasConcept C153180895 @default.
- W2890593601 hasConcept C154945302 @default.
- W2890593601 hasConcept C155512373 @default.
- W2890593601 hasConcept C205649164 @default.
- W2890593601 hasConcept C2776401178 @default.
- W2890593601 hasConcept C2778755073 @default.
- W2890593601 hasConcept C41008148 @default.
- W2890593601 hasConcept C41895202 @default.
- W2890593601 hasConcept C50644808 @default.
- W2890593601 hasConcept C52622490 @default.
- W2890593601 hasConcept C544519230 @default.
- W2890593601 hasConcept C58640448 @default.
- W2890593601 hasConcept C71924100 @default.
- W2890593601 hasConcept C81363708 @default.
- W2890593601 hasConceptScore W2890593601C108583219 @default.
- W2890593601 hasConceptScore W2890593601C11413529 @default.
- W2890593601 hasConceptScore W2890593601C126838900 @default.
- W2890593601 hasConceptScore W2890593601C138885662 @default.
- W2890593601 hasConceptScore W2890593601C153180895 @default.
- W2890593601 hasConceptScore W2890593601C154945302 @default.
- W2890593601 hasConceptScore W2890593601C155512373 @default.
- W2890593601 hasConceptScore W2890593601C205649164 @default.
- W2890593601 hasConceptScore W2890593601C2776401178 @default.
- W2890593601 hasConceptScore W2890593601C2778755073 @default.
- W2890593601 hasConceptScore W2890593601C41008148 @default.
- W2890593601 hasConceptScore W2890593601C41895202 @default.
- W2890593601 hasConceptScore W2890593601C50644808 @default.
- W2890593601 hasConceptScore W2890593601C52622490 @default.
- W2890593601 hasConceptScore W2890593601C544519230 @default.
- W2890593601 hasConceptScore W2890593601C58640448 @default.
- W2890593601 hasConceptScore W2890593601C71924100 @default.
- W2890593601 hasConceptScore W2890593601C81363708 @default.
- W2890593601 hasLocation W28905936011 @default.
- W2890593601 hasOpenAccess W2890593601 @default.
- W2890593601 hasPrimaryLocation W28905936011 @default.
- W2890593601 hasRelatedWork W2279398222 @default.
- W2890593601 hasRelatedWork W2546942002 @default.
- W2890593601 hasRelatedWork W2731899572 @default.
- W2890593601 hasRelatedWork W3133861977 @default.
- W2890593601 hasRelatedWork W3156786002 @default.
- W2890593601 hasRelatedWork W4200173597 @default.
- W2890593601 hasRelatedWork W4299822940 @default.
- W2890593601 hasRelatedWork W4312417841 @default.
- W2890593601 hasRelatedWork W4321369474 @default.
- W2890593601 hasRelatedWork W4366492315 @default.
- W2890593601 isParatext "false" @default.
- W2890593601 isRetracted "false" @default.
- W2890593601 magId "2890593601" @default.
- W2890593601 workType "article" @default.