Matches in SemOpenAlex for { <https://semopenalex.org/work/W2890594988> ?p ?o ?g. }
Showing items 1 to 77 of
77
with 100 items per page.
- W2890594988 abstract "Image denoising algorithms have evolved to optimize image quality as measured according to human visual perception. However, image denoising to maximize the success of computer vision algorithms operating on the denoised image has been much less investigated. We consider the problem of image denoising for Gaussian noise with respect to the specific application of image retrieval from a dataset. We define the notion of image quality as determined by the success of image retrieval and design a deep convolutional neural network (CNN) to predict this quality. This network is then cascaded with a deep CNN designed for image denoising, allowing for optimization of the denoising CNN to maximize retrieval performance. This framework allows us to couple denoising to the retrieval problem. We show through experiments on noisy images of the Oxford and Paris buildings datasets that such an approach yields improved mean average precision when compared to using denoising methods that are oblivious to the task of image retrieval." @default.
- W2890594988 created "2018-09-27" @default.
- W2890594988 creator A5055091440 @default.
- W2890594988 creator A5079266976 @default.
- W2890594988 creator A5079804319 @default.
- W2890594988 date "2018-10-01" @default.
- W2890594988 modified "2023-09-23" @default.
- W2890594988 title "Image Denoising for Image Retrieval by Cascading a Deep Quality Assessment Network" @default.
- W2890594988 cites W1982471090 @default.
- W2890594988 cites W2051596736 @default.
- W2890594988 cites W2056370875 @default.
- W2890594988 cites W2117539524 @default.
- W2890594988 cites W2119605622 @default.
- W2890594988 cites W2129644086 @default.
- W2890594988 cites W2133665775 @default.
- W2890594988 cites W2141362318 @default.
- W2890594988 cites W2148809531 @default.
- W2890594988 cites W2151103935 @default.
- W2890594988 cites W2172275395 @default.
- W2890594988 cites W2508457857 @default.
- W2890594988 doi "https://doi.org/10.1109/icip.2018.8451132" @default.
- W2890594988 hasPublicationYear "2018" @default.
- W2890594988 type Work @default.
- W2890594988 sameAs 2890594988 @default.
- W2890594988 citedByCount "13" @default.
- W2890594988 countsByYear W28905949882019 @default.
- W2890594988 countsByYear W28905949882020 @default.
- W2890594988 countsByYear W28905949882021 @default.
- W2890594988 countsByYear W28905949882022 @default.
- W2890594988 countsByYear W28905949882023 @default.
- W2890594988 crossrefType "proceedings-article" @default.
- W2890594988 hasAuthorship W2890594988A5055091440 @default.
- W2890594988 hasAuthorship W2890594988A5079266976 @default.
- W2890594988 hasAuthorship W2890594988A5079804319 @default.
- W2890594988 hasConcept C101453961 @default.
- W2890594988 hasConcept C108583219 @default.
- W2890594988 hasConcept C115961682 @default.
- W2890594988 hasConcept C153180895 @default.
- W2890594988 hasConcept C154945302 @default.
- W2890594988 hasConcept C163294075 @default.
- W2890594988 hasConcept C1667742 @default.
- W2890594988 hasConcept C2983327147 @default.
- W2890594988 hasConcept C31972630 @default.
- W2890594988 hasConcept C41008148 @default.
- W2890594988 hasConcept C55020928 @default.
- W2890594988 hasConcept C81363708 @default.
- W2890594988 hasConcept C99498987 @default.
- W2890594988 hasConceptScore W2890594988C101453961 @default.
- W2890594988 hasConceptScore W2890594988C108583219 @default.
- W2890594988 hasConceptScore W2890594988C115961682 @default.
- W2890594988 hasConceptScore W2890594988C153180895 @default.
- W2890594988 hasConceptScore W2890594988C154945302 @default.
- W2890594988 hasConceptScore W2890594988C163294075 @default.
- W2890594988 hasConceptScore W2890594988C1667742 @default.
- W2890594988 hasConceptScore W2890594988C2983327147 @default.
- W2890594988 hasConceptScore W2890594988C31972630 @default.
- W2890594988 hasConceptScore W2890594988C41008148 @default.
- W2890594988 hasConceptScore W2890594988C55020928 @default.
- W2890594988 hasConceptScore W2890594988C81363708 @default.
- W2890594988 hasConceptScore W2890594988C99498987 @default.
- W2890594988 hasLocation W28905949881 @default.
- W2890594988 hasOpenAccess W2890594988 @default.
- W2890594988 hasPrimaryLocation W28905949881 @default.
- W2890594988 hasRelatedWork W1495521283 @default.
- W2890594988 hasRelatedWork W1964100169 @default.
- W2890594988 hasRelatedWork W2021118213 @default.
- W2890594988 hasRelatedWork W2037642501 @default.
- W2890594988 hasRelatedWork W2073358429 @default.
- W2890594988 hasRelatedWork W2483420468 @default.
- W2890594988 hasRelatedWork W2810018092 @default.
- W2890594988 hasRelatedWork W3182043338 @default.
- W2890594988 hasRelatedWork W4287081060 @default.
- W2890594988 hasRelatedWork W2092619848 @default.
- W2890594988 isParatext "false" @default.
- W2890594988 isRetracted "false" @default.
- W2890594988 magId "2890594988" @default.
- W2890594988 workType "article" @default.