Matches in SemOpenAlex for { <https://semopenalex.org/work/W2890599451> ?p ?o ?g. }
- W2890599451 endingPage "194" @default.
- W2890599451 startingPage "187" @default.
- W2890599451 abstract "The distribution and abundance of Phlebotomus papatasi, the primary vector of zoonotic cutaneous leishmaniasis in most semi-/arid countries, is a major public health challenge. This study compares several approaches to model the spatial distribution of the species in an endemic region of the disease in Golestan province, northeast of Iran. The intent is to assist decision makers for targeted interventions. We developed a geo-database of the collected Phlebotominae sand flies from different parts of the study region. Sticky paper traps coated with castor oil were used to collect sand flies. In 44 out of 142 sampling sites, Ph. papatasi was present. We also gathered and prepared data on related environmental factors including topography, weather variables, distance to main rivers and remotely sensed data such as normalized difference vegetation cover and land surface temperature (LST) in a GIS framework. Applicability of three classifiers: (vanilla) logistic regression, random forest and support vector machine (SVM) were compared for predicting presence/absence of the vector. Predictive performances were compared using an independent dataset to generate area under the ROC curve (AUC) and Kappa statistics. All three models successfully predicted the presence/absence of the vector, however, the SVM classifier (Accuracy = 0.906, AUC = 0.974, Kappa = 0.876) outperformed the other classifiers on predicting accuracy. Moreover, this classifier was the most sensitive (85%), and the most specific (93%) model. Sensitivity analysis of the most accurate model (i.e. SVM) revealed that slope, nighttime LST in October and mean temperature of the wettest quarter were among the most important predictors. The findings suggest that machine learning techniques, especially the SVM classifier, when coupled with GIS and remote sensing data can be a useful and cost-effective way for identifying habitat suitability of the species." @default.
- W2890599451 created "2018-09-27" @default.
- W2890599451 creator A5007040136 @default.
- W2890599451 creator A5037773229 @default.
- W2890599451 creator A5066560413 @default.
- W2890599451 creator A5070857760 @default.
- W2890599451 creator A5085450626 @default.
- W2890599451 creator A5085798722 @default.
- W2890599451 date "2018-12-01" @default.
- W2890599451 modified "2023-10-11" @default.
- W2890599451 title "Machine learning approaches in GIS-based ecological modeling of the sand fly Phlebotomus papatasi, a vector of zoonotic cutaneous leishmaniasis in Golestan province, Iran" @default.
- W2890599451 cites W1644997609 @default.
- W2890599451 cites W1851624757 @default.
- W2890599451 cites W1964940342 @default.
- W2890599451 cites W1970276867 @default.
- W2890599451 cites W1988195734 @default.
- W2890599451 cites W2019980555 @default.
- W2890599451 cites W2058136774 @default.
- W2890599451 cites W2067513146 @default.
- W2890599451 cites W2069228935 @default.
- W2890599451 cites W2079765579 @default.
- W2890599451 cites W2093589181 @default.
- W2890599451 cites W2101095383 @default.
- W2890599451 cites W2111072639 @default.
- W2890599451 cites W2112776483 @default.
- W2890599451 cites W2113965979 @default.
- W2890599451 cites W2115268776 @default.
- W2890599451 cites W2124365263 @default.
- W2890599451 cites W2129518423 @default.
- W2890599451 cites W2129585530 @default.
- W2890599451 cites W2132424470 @default.
- W2890599451 cites W2139837893 @default.
- W2890599451 cites W2149298154 @default.
- W2890599451 cites W2155955992 @default.
- W2890599451 cites W2157825442 @default.
- W2890599451 cites W2162999126 @default.
- W2890599451 cites W2176176239 @default.
- W2890599451 cites W2261850706 @default.
- W2890599451 cites W2267548958 @default.
- W2890599451 cites W2313855395 @default.
- W2890599451 cites W2502167843 @default.
- W2890599451 cites W2557888318 @default.
- W2890599451 cites W2564658196 @default.
- W2890599451 cites W2590539493 @default.
- W2890599451 cites W2597648394 @default.
- W2890599451 cites W2769346528 @default.
- W2890599451 cites W2773760123 @default.
- W2890599451 cites W4294214797 @default.
- W2890599451 doi "https://doi.org/10.1016/j.actatropica.2018.09.004" @default.
- W2890599451 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/30201488" @default.
- W2890599451 hasPublicationYear "2018" @default.
- W2890599451 type Work @default.
- W2890599451 sameAs 2890599451 @default.
- W2890599451 citedByCount "50" @default.
- W2890599451 countsByYear W28905994512018 @default.
- W2890599451 countsByYear W28905994512019 @default.
- W2890599451 countsByYear W28905994512020 @default.
- W2890599451 countsByYear W28905994512021 @default.
- W2890599451 countsByYear W28905994512022 @default.
- W2890599451 countsByYear W28905994512023 @default.
- W2890599451 crossrefType "journal-article" @default.
- W2890599451 hasAuthorship W2890599451A5007040136 @default.
- W2890599451 hasAuthorship W2890599451A5037773229 @default.
- W2890599451 hasAuthorship W2890599451A5066560413 @default.
- W2890599451 hasAuthorship W2890599451A5070857760 @default.
- W2890599451 hasAuthorship W2890599451A5085450626 @default.
- W2890599451 hasAuthorship W2890599451A5085798722 @default.
- W2890599451 hasConcept C104317684 @default.
- W2890599451 hasConcept C119857082 @default.
- W2890599451 hasConcept C12267149 @default.
- W2890599451 hasConcept C169258074 @default.
- W2890599451 hasConcept C18903297 @default.
- W2890599451 hasConcept C203014093 @default.
- W2890599451 hasConcept C205649164 @default.
- W2890599451 hasConcept C2776555147 @default.
- W2890599451 hasConcept C2777553398 @default.
- W2890599451 hasConcept C2777983519 @default.
- W2890599451 hasConcept C2778702967 @default.
- W2890599451 hasConcept C2780648208 @default.
- W2890599451 hasConcept C39432304 @default.
- W2890599451 hasConcept C40767141 @default.
- W2890599451 hasConcept C41008148 @default.
- W2890599451 hasConcept C42972112 @default.
- W2890599451 hasConcept C4792198 @default.
- W2890599451 hasConcept C55493867 @default.
- W2890599451 hasConcept C71924100 @default.
- W2890599451 hasConcept C86803240 @default.
- W2890599451 hasConcept C92087593 @default.
- W2890599451 hasConceptScore W2890599451C104317684 @default.
- W2890599451 hasConceptScore W2890599451C119857082 @default.
- W2890599451 hasConceptScore W2890599451C12267149 @default.
- W2890599451 hasConceptScore W2890599451C169258074 @default.
- W2890599451 hasConceptScore W2890599451C18903297 @default.
- W2890599451 hasConceptScore W2890599451C203014093 @default.
- W2890599451 hasConceptScore W2890599451C205649164 @default.
- W2890599451 hasConceptScore W2890599451C2776555147 @default.
- W2890599451 hasConceptScore W2890599451C2777553398 @default.
- W2890599451 hasConceptScore W2890599451C2777983519 @default.