Matches in SemOpenAlex for { <https://semopenalex.org/work/W2890600890> ?p ?o ?g. }
- W2890600890 endingPage "192" @default.
- W2890600890 startingPage "176" @default.
- W2890600890 abstract "Conventional visual ship tracking methods employ single and shallow features for the ship tracking task, which may fail when a ship presents a different appearance and shape in maritime surveillance videos. To overcome this difficulty, we propose to employ a multi-view learning algorithm to extract a highly coupled and robust ship descriptor from multiple distinct ship feature sets. First, we explore multiple distinct ship feature sets consisting of a Laplacian-of-Gaussian (LoG) descriptor, a Local Binary Patterns (LBP) descriptor, a Gabor filter, a Histogram of Oriented Gradients (HOG) descriptor and a Canny descriptor, which present geometry structure, texture and contour information, and more. Then, we propose a framework for integrating a multi-view learning algorithm and a sparse representation method to track ships efficiently and effectively. Finally, our framework is evaluated in four typical maritime surveillance scenarios. The experimental results show that the proposed framework outperforms the conventional and typical ship tracking methods." @default.
- W2890600890 created "2018-09-27" @default.
- W2890600890 creator A5015001687 @default.
- W2890600890 creator A5022122006 @default.
- W2890600890 creator A5042969384 @default.
- W2890600890 creator A5049900562 @default.
- W2890600890 creator A5058026627 @default.
- W2890600890 creator A5071392717 @default.
- W2890600890 date "2018-09-13" @default.
- W2890600890 modified "2023-10-02" @default.
- W2890600890 title "Robust Ship Tracking via Multi-view Learning and Sparse Representation" @default.
- W2890600890 cites W1480282965 @default.
- W2890600890 cites W1481035327 @default.
- W2890600890 cites W1915599933 @default.
- W2890600890 cites W1974770072 @default.
- W2890600890 cites W1975157055 @default.
- W2890600890 cites W1977535427 @default.
- W2890600890 cites W1984519272 @default.
- W2890600890 cites W1985535533 @default.
- W2890600890 cites W1995699457 @default.
- W2890600890 cites W2006982476 @default.
- W2890600890 cites W2015833069 @default.
- W2890600890 cites W2018246484 @default.
- W2890600890 cites W2029875711 @default.
- W2890600890 cites W2032612424 @default.
- W2890600890 cites W2041349596 @default.
- W2890600890 cites W2045593919 @default.
- W2890600890 cites W2058532765 @default.
- W2890600890 cites W2073988075 @default.
- W2890600890 cites W2085789144 @default.
- W2890600890 cites W2094919853 @default.
- W2890600890 cites W2096634118 @default.
- W2890600890 cites W2107776472 @default.
- W2890600890 cites W2113577207 @default.
- W2890600890 cites W2132555912 @default.
- W2890600890 cites W2145023731 @default.
- W2890600890 cites W2146769544 @default.
- W2890600890 cites W2150828505 @default.
- W2890600890 cites W2153595412 @default.
- W2890600890 cites W2161730892 @default.
- W2890600890 cites W2184976395 @default.
- W2890600890 cites W2334697381 @default.
- W2890600890 cites W2472115300 @default.
- W2890600890 cites W2485373671 @default.
- W2890600890 cites W2509813992 @default.
- W2890600890 cites W2519079179 @default.
- W2890600890 cites W2575125657 @default.
- W2890600890 cites W2594736882 @default.
- W2890600890 cites W2611382369 @default.
- W2890600890 cites W2617085872 @default.
- W2890600890 doi "https://doi.org/10.1017/s0373463318000504" @default.
- W2890600890 hasPublicationYear "2018" @default.
- W2890600890 type Work @default.
- W2890600890 sameAs 2890600890 @default.
- W2890600890 citedByCount "84" @default.
- W2890600890 countsByYear W28906008902019 @default.
- W2890600890 countsByYear W28906008902020 @default.
- W2890600890 countsByYear W28906008902021 @default.
- W2890600890 countsByYear W28906008902022 @default.
- W2890600890 countsByYear W28906008902023 @default.
- W2890600890 crossrefType "journal-article" @default.
- W2890600890 hasAuthorship W2890600890A5015001687 @default.
- W2890600890 hasAuthorship W2890600890A5022122006 @default.
- W2890600890 hasAuthorship W2890600890A5042969384 @default.
- W2890600890 hasAuthorship W2890600890A5049900562 @default.
- W2890600890 hasAuthorship W2890600890A5058026627 @default.
- W2890600890 hasAuthorship W2890600890A5071392717 @default.
- W2890600890 hasConcept C115961682 @default.
- W2890600890 hasConcept C124066611 @default.
- W2890600890 hasConcept C138885662 @default.
- W2890600890 hasConcept C153180895 @default.
- W2890600890 hasConcept C154945302 @default.
- W2890600890 hasConcept C15744967 @default.
- W2890600890 hasConcept C17426736 @default.
- W2890600890 hasConcept C17744445 @default.
- W2890600890 hasConcept C19417346 @default.
- W2890600890 hasConcept C199539241 @default.
- W2890600890 hasConcept C2775936607 @default.
- W2890600890 hasConcept C2776359362 @default.
- W2890600890 hasConcept C2776401178 @default.
- W2890600890 hasConcept C2779883129 @default.
- W2890600890 hasConcept C31972630 @default.
- W2890600890 hasConcept C41008148 @default.
- W2890600890 hasConcept C41895202 @default.
- W2890600890 hasConcept C52622490 @default.
- W2890600890 hasConcept C53533937 @default.
- W2890600890 hasConcept C87335442 @default.
- W2890600890 hasConcept C94625758 @default.
- W2890600890 hasConceptScore W2890600890C115961682 @default.
- W2890600890 hasConceptScore W2890600890C124066611 @default.
- W2890600890 hasConceptScore W2890600890C138885662 @default.
- W2890600890 hasConceptScore W2890600890C153180895 @default.
- W2890600890 hasConceptScore W2890600890C154945302 @default.
- W2890600890 hasConceptScore W2890600890C15744967 @default.
- W2890600890 hasConceptScore W2890600890C17426736 @default.
- W2890600890 hasConceptScore W2890600890C17744445 @default.
- W2890600890 hasConceptScore W2890600890C19417346 @default.
- W2890600890 hasConceptScore W2890600890C199539241 @default.