Matches in SemOpenAlex for { <https://semopenalex.org/work/W2890611227> ?p ?o ?g. }
- W2890611227 endingPage "1394" @default.
- W2890611227 startingPage "1394" @default.
- W2890611227 abstract "The research and improvement of methods to be used for crop monitoring are currently major challenges, especially for radar images due to their speckle noise nature. The European Space Agency’s (ESA) Sentinel-1 constellation provides synthetic aperture radar (SAR) images coverage with a 6-day revisit period at a high spatial resolution of pixel spacing of 20 m. Sentinel-1 data are considerably useful, as they provide valuable information of the vegetation cover. The objective of this work is to study the capabilities of multitemporal radar images for rice height and dry biomass retrievals using Sentinel-1 data. To do this, we train Sentinel-1 data against ground measurements with classical machine learning techniques (Multiple Linear Regression (MLR), Support Vector Regression (SVR) and Random Forest (RF)) to estimate rice height and dry biomass. The study is carried out on a multitemporal Sentinel-1 dataset acquired from May 2017 to September 2017 over the Camargue region, southern France. The ground in-situ measurements were made in the same period to collect rice height and dry biomass over 11 rice fields. The images were processed in order to produce a radar stack in C-band including dual-polarization VV (Vertical receive and Vertical transmit) and VH (Vertical receive and Horizontal transmit) data. We found that non-parametric methods (SVR and RF) had a better performance over the parametric MLR method for rice biophysical parameter retrievals. The accuracy of rice height estimation showed that rice height retrieval was strongly correlated to the in-situ rice height from dual-polarization, in which Random Forest yielded the best performance with correlation coefficient R 2 = 0.92 and the root mean square error (RMSE) 16% (7.9 cm). In addition, we demonstrated that the correlation of Sentinel-1 signal to the biomass was also very high in VH polarization with R 2 = 0.9 and RMSE = 18% (162 g·m − 2 ) (with Random Forest method). Such results indicate that the highly qualified Sentinel-1 radar data could be well exploited for rice biomass and height retrieval and they could be used for operational tasks." @default.
- W2890611227 created "2018-09-27" @default.
- W2890611227 creator A5005595654 @default.
- W2890611227 creator A5009185550 @default.
- W2890611227 creator A5010110259 @default.
- W2890611227 creator A5043605127 @default.
- W2890611227 creator A5065161398 @default.
- W2890611227 creator A5066811722 @default.
- W2890611227 creator A5076394373 @default.
- W2890611227 date "2018-09-01" @default.
- W2890611227 modified "2023-10-18" @default.
- W2890611227 title "Estimation of Rice Height and Biomass Using Multitemporal SAR Sentinel-1 for Camargue, Southern France" @default.
- W2890611227 cites W1612700042 @default.
- W2890611227 cites W1984168249 @default.
- W2890611227 cites W1984670836 @default.
- W2890611227 cites W2003323862 @default.
- W2890611227 cites W2009707410 @default.
- W2890611227 cites W2018627383 @default.
- W2890611227 cites W2021711669 @default.
- W2890611227 cites W2036282733 @default.
- W2890611227 cites W2038622951 @default.
- W2890611227 cites W2045877890 @default.
- W2890611227 cites W2056435747 @default.
- W2890611227 cites W2058723831 @default.
- W2890611227 cites W2058848462 @default.
- W2890611227 cites W2068427983 @default.
- W2890611227 cites W2076208593 @default.
- W2890611227 cites W2094011904 @default.
- W2890611227 cites W2096352448 @default.
- W2890611227 cites W2109090765 @default.
- W2890611227 cites W2112206513 @default.
- W2890611227 cites W2112835976 @default.
- W2890611227 cites W2119295421 @default.
- W2890611227 cites W2130470461 @default.
- W2890611227 cites W2132671857 @default.
- W2890611227 cites W2133941557 @default.
- W2890611227 cites W2151250213 @default.
- W2890611227 cites W2152429819 @default.
- W2890611227 cites W2154964173 @default.
- W2890611227 cites W2171688314 @default.
- W2890611227 cites W2233187166 @default.
- W2890611227 cites W2319055710 @default.
- W2890611227 cites W2325074942 @default.
- W2890611227 cites W2465750332 @default.
- W2890611227 cites W2532266163 @default.
- W2890611227 cites W2585309444 @default.
- W2890611227 cites W2593173520 @default.
- W2890611227 cites W2611997817 @default.
- W2890611227 cites W2747000343 @default.
- W2890611227 cites W2767166343 @default.
- W2890611227 cites W2767268646 @default.
- W2890611227 cites W2789665835 @default.
- W2890611227 cites W2803256204 @default.
- W2890611227 cites W2810730720 @default.
- W2890611227 cites W2886493749 @default.
- W2890611227 cites W2911964244 @default.
- W2890611227 doi "https://doi.org/10.3390/rs10091394" @default.
- W2890611227 hasPublicationYear "2018" @default.
- W2890611227 type Work @default.
- W2890611227 sameAs 2890611227 @default.
- W2890611227 citedByCount "49" @default.
- W2890611227 countsByYear W28906112272018 @default.
- W2890611227 countsByYear W28906112272019 @default.
- W2890611227 countsByYear W28906112272020 @default.
- W2890611227 countsByYear W28906112272021 @default.
- W2890611227 countsByYear W28906112272022 @default.
- W2890611227 countsByYear W28906112272023 @default.
- W2890611227 crossrefType "journal-article" @default.
- W2890611227 hasAuthorship W2890611227A5005595654 @default.
- W2890611227 hasAuthorship W2890611227A5009185550 @default.
- W2890611227 hasAuthorship W2890611227A5010110259 @default.
- W2890611227 hasAuthorship W2890611227A5043605127 @default.
- W2890611227 hasAuthorship W2890611227A5065161398 @default.
- W2890611227 hasAuthorship W2890611227A5066811722 @default.
- W2890611227 hasAuthorship W2890611227A5076394373 @default.
- W2890611227 hasBestOaLocation W28906112271 @default.
- W2890611227 hasConcept C205649164 @default.
- W2890611227 hasConcept C39432304 @default.
- W2890611227 hasConcept C62649853 @default.
- W2890611227 hasConcept C87360688 @default.
- W2890611227 hasConceptScore W2890611227C205649164 @default.
- W2890611227 hasConceptScore W2890611227C39432304 @default.
- W2890611227 hasConceptScore W2890611227C62649853 @default.
- W2890611227 hasConceptScore W2890611227C87360688 @default.
- W2890611227 hasIssue "9" @default.
- W2890611227 hasLocation W28906112271 @default.
- W2890611227 hasLocation W28906112272 @default.
- W2890611227 hasLocation W28906112273 @default.
- W2890611227 hasLocation W28906112274 @default.
- W2890611227 hasLocation W28906112275 @default.
- W2890611227 hasLocation W28906112276 @default.
- W2890611227 hasOpenAccess W2890611227 @default.
- W2890611227 hasPrimaryLocation W28906112271 @default.
- W2890611227 hasRelatedWork W1983126463 @default.
- W2890611227 hasRelatedWork W2059707233 @default.
- W2890611227 hasRelatedWork W2121524756 @default.
- W2890611227 hasRelatedWork W2355001665 @default.
- W2890611227 hasRelatedWork W2548237868 @default.