Matches in SemOpenAlex for { <https://semopenalex.org/work/W2890612197> ?p ?o ?g. }
- W2890612197 endingPage "671" @default.
- W2890612197 startingPage "661" @default.
- W2890612197 abstract "Abstract Energy companies need efficient procedures to perform market calibration of stochastic models for commodities. If the Black framework is chosen for option pricing, the bottleneck of the market calibration is the computation of the variance of the asset. Energy commodities are commonly represented by multifactor linear models, whose variance obeys a matrix Lyapunov differential equation. In this article, analytical and methods to derive the variance are discussed: the Lyapunov approach is shown to be more straightforward than ad hoc derivations found in the literature and can be readily extended to higher dimensional models. A case study is presented, where the variance of a two‐factor mean‐reverting model is embedded into the Black formulae and the model parameters are calibrated against listed options. The analytical and numerical methods are compared, showing that the former makes the calibration 14 times faster. A Python implementation of the proposed methods is available as open‐source software on GitHub." @default.
- W2890612197 created "2018-09-27" @default.
- W2890612197 creator A5010969664 @default.
- W2890612197 creator A5017270452 @default.
- W2890612197 creator A5089085152 @default.
- W2890612197 date "2021-01-10" @default.
- W2890612197 modified "2023-10-17" @default.
- W2890612197 title "Fast calibration of two‐factor models for energy option pricing" @default.
- W2890612197 cites W1482923053 @default.
- W2890612197 cites W1511275238 @default.
- W2890612197 cites W1990647940 @default.
- W2890612197 cites W2005126631 @default.
- W2890612197 cites W2020041898 @default.
- W2890612197 cites W2050067494 @default.
- W2890612197 cites W2077791698 @default.
- W2890612197 cites W2141186877 @default.
- W2890612197 cites W2145224101 @default.
- W2890612197 cites W2150313108 @default.
- W2890612197 cites W2903953433 @default.
- W2890612197 cites W2906305375 @default.
- W2890612197 cites W2955436344 @default.
- W2890612197 cites W2963319432 @default.
- W2890612197 cites W3031920620 @default.
- W2890612197 cites W3110587534 @default.
- W2890612197 cites W3123783834 @default.
- W2890612197 cites W3124705642 @default.
- W2890612197 cites W3126101885 @default.
- W2890612197 cites W4243055393 @default.
- W2890612197 doi "https://doi.org/10.1002/asmb.2604" @default.
- W2890612197 hasPublicationYear "2021" @default.
- W2890612197 type Work @default.
- W2890612197 sameAs 2890612197 @default.
- W2890612197 citedByCount "0" @default.
- W2890612197 crossrefType "journal-article" @default.
- W2890612197 hasAuthorship W2890612197A5010969664 @default.
- W2890612197 hasAuthorship W2890612197A5017270452 @default.
- W2890612197 hasAuthorship W2890612197A5089085152 @default.
- W2890612197 hasBestOaLocation W28906121972 @default.
- W2890612197 hasConcept C105795698 @default.
- W2890612197 hasConcept C111919701 @default.
- W2890612197 hasConcept C11413529 @default.
- W2890612197 hasConcept C121332964 @default.
- W2890612197 hasConcept C121955636 @default.
- W2890612197 hasConcept C126255220 @default.
- W2890612197 hasConcept C149635348 @default.
- W2890612197 hasConcept C149782125 @default.
- W2890612197 hasConcept C158622935 @default.
- W2890612197 hasConcept C162324750 @default.
- W2890612197 hasConcept C165838908 @default.
- W2890612197 hasConcept C194483076 @default.
- W2890612197 hasConcept C196083921 @default.
- W2890612197 hasConcept C199360897 @default.
- W2890612197 hasConcept C2777904410 @default.
- W2890612197 hasConcept C2780513914 @default.
- W2890612197 hasConcept C28826006 @default.
- W2890612197 hasConcept C33923547 @default.
- W2890612197 hasConcept C41008148 @default.
- W2890612197 hasConcept C45374587 @default.
- W2890612197 hasConcept C519991488 @default.
- W2890612197 hasConcept C60640748 @default.
- W2890612197 hasConcept C62520636 @default.
- W2890612197 hasConceptScore W2890612197C105795698 @default.
- W2890612197 hasConceptScore W2890612197C111919701 @default.
- W2890612197 hasConceptScore W2890612197C11413529 @default.
- W2890612197 hasConceptScore W2890612197C121332964 @default.
- W2890612197 hasConceptScore W2890612197C121955636 @default.
- W2890612197 hasConceptScore W2890612197C126255220 @default.
- W2890612197 hasConceptScore W2890612197C149635348 @default.
- W2890612197 hasConceptScore W2890612197C149782125 @default.
- W2890612197 hasConceptScore W2890612197C158622935 @default.
- W2890612197 hasConceptScore W2890612197C162324750 @default.
- W2890612197 hasConceptScore W2890612197C165838908 @default.
- W2890612197 hasConceptScore W2890612197C194483076 @default.
- W2890612197 hasConceptScore W2890612197C196083921 @default.
- W2890612197 hasConceptScore W2890612197C199360897 @default.
- W2890612197 hasConceptScore W2890612197C2777904410 @default.
- W2890612197 hasConceptScore W2890612197C2780513914 @default.
- W2890612197 hasConceptScore W2890612197C28826006 @default.
- W2890612197 hasConceptScore W2890612197C33923547 @default.
- W2890612197 hasConceptScore W2890612197C41008148 @default.
- W2890612197 hasConceptScore W2890612197C45374587 @default.
- W2890612197 hasConceptScore W2890612197C519991488 @default.
- W2890612197 hasConceptScore W2890612197C60640748 @default.
- W2890612197 hasConceptScore W2890612197C62520636 @default.
- W2890612197 hasIssue "3" @default.
- W2890612197 hasLocation W28906121971 @default.
- W2890612197 hasLocation W28906121972 @default.
- W2890612197 hasLocation W28906121973 @default.
- W2890612197 hasOpenAccess W2890612197 @default.
- W2890612197 hasPrimaryLocation W28906121971 @default.
- W2890612197 hasRelatedWork W2087937280 @default.
- W2890612197 hasRelatedWork W2353647904 @default.
- W2890612197 hasRelatedWork W2354251581 @default.
- W2890612197 hasRelatedWork W2357461155 @default.
- W2890612197 hasRelatedWork W2377081715 @default.
- W2890612197 hasRelatedWork W2384129116 @default.
- W2890612197 hasRelatedWork W2766721049 @default.
- W2890612197 hasRelatedWork W3145924829 @default.