Matches in SemOpenAlex for { <https://semopenalex.org/work/W2890613332> ?p ?o ?g. }
- W2890613332 endingPage "5714" @default.
- W2890613332 startingPage "5701" @default.
- W2890613332 abstract "It has been suspected since the early days of the random-phase approximation (RPA) that corrections to RPA correlation energies result mostly from short-range correlation effects and are thus amenable to perturbation theory. Here we test this hypothesis by analyzing formal and numerical results for the most common beyond-RPA perturbative corrections, including the bare second-order exchange (SOX), second-order screened exchange (SOSEX), and approximate exchange kernel (AXK) methods. Our analysis is facilitated by efficient and robust algorithms based on the resolution-of-the-identity (RI) approximation and numerical frequency integration, which enable benchmark beyond-RPA calculations on medium- and large-size molecules with size-independent accuracy. The AXK method systematically improves upon RPA, SOX, and SOSEX for reaction barrier heights, reaction energies, and noncovalent interaction energies of main-group compounds. The improved accuracy of AXK compared with SOX and SOSEX is attributed to stronger screening of bare SOX in AXK. For reactions involving transition-metal compounds, particularly 3d transition-metal dimers, the AXK correction is too small and can even have the wrong sign. These observations are rationalized by a measure α̅ of the effective coupling strength for beyond-RPA correlation. When the effective coupling strength increases beyond a critical α̅ value of approximately 0.5, the RPA errors increase rapidly and perturbative corrections become unreliable. Thus, perturbation theory can systematically correct RPA but only for systems and properties qualitatively well captured by RPA, as indicated by small α̅ values." @default.
- W2890613332 created "2018-09-27" @default.
- W2890613332 creator A5035326725 @default.
- W2890613332 creator A5048985003 @default.
- W2890613332 creator A5091066585 @default.
- W2890613332 date "2018-09-21" @default.
- W2890613332 modified "2023-10-08" @default.
- W2890613332 title "Performance and Scope of Perturbative Corrections to Random-Phase Approximation Energies" @default.
- W2890613332 cites W1144162231 @default.
- W2890613332 cites W1643643809 @default.
- W2890613332 cites W1840376913 @default.
- W2890613332 cites W1887172372 @default.
- W2890613332 cites W1963683620 @default.
- W2890613332 cites W1969126341 @default.
- W2890613332 cites W1976294475 @default.
- W2890613332 cites W1978849007 @default.
- W2890613332 cites W1979040280 @default.
- W2890613332 cites W1983805579 @default.
- W2890613332 cites W1983972427 @default.
- W2890613332 cites W1985122440 @default.
- W2890613332 cites W1986783124 @default.
- W2890613332 cites W1986891982 @default.
- W2890613332 cites W1988091937 @default.
- W2890613332 cites W1988425770 @default.
- W2890613332 cites W1988888548 @default.
- W2890613332 cites W1990849018 @default.
- W2890613332 cites W1990889695 @default.
- W2890613332 cites W1993898990 @default.
- W2890613332 cites W1997307724 @default.
- W2890613332 cites W1997684194 @default.
- W2890613332 cites W2000068555 @default.
- W2890613332 cites W2002782616 @default.
- W2890613332 cites W2004036108 @default.
- W2890613332 cites W2009867601 @default.
- W2890613332 cites W2012165618 @default.
- W2890613332 cites W2015313768 @default.
- W2890613332 cites W2015600899 @default.
- W2890613332 cites W2018135086 @default.
- W2890613332 cites W2020056288 @default.
- W2890613332 cites W2022804778 @default.
- W2890613332 cites W2023390323 @default.
- W2890613332 cites W2024113579 @default.
- W2890613332 cites W2028054907 @default.
- W2890613332 cites W2029740544 @default.
- W2890613332 cites W2031213242 @default.
- W2890613332 cites W2031551268 @default.
- W2890613332 cites W2031554708 @default.
- W2890613332 cites W2032719166 @default.
- W2890613332 cites W2033212594 @default.
- W2890613332 cites W2033807019 @default.
- W2890613332 cites W2036330668 @default.
- W2890613332 cites W2036596420 @default.
- W2890613332 cites W2038305447 @default.
- W2890613332 cites W2039152239 @default.
- W2890613332 cites W2042498709 @default.
- W2890613332 cites W2043084917 @default.
- W2890613332 cites W2044940178 @default.
- W2890613332 cites W2046320515 @default.
- W2890613332 cites W2047027258 @default.
- W2890613332 cites W2051559391 @default.
- W2890613332 cites W2052766668 @default.
- W2890613332 cites W2053415214 @default.
- W2890613332 cites W2053499780 @default.
- W2890613332 cites W2055014004 @default.
- W2890613332 cites W2055230539 @default.
- W2890613332 cites W2056155800 @default.
- W2890613332 cites W2059960578 @default.
- W2890613332 cites W2064798852 @default.
- W2890613332 cites W2065263906 @default.
- W2890613332 cites W2067804932 @default.
- W2890613332 cites W2068479188 @default.
- W2890613332 cites W2069006374 @default.
- W2890613332 cites W2070623500 @default.
- W2890613332 cites W2072996664 @default.
- W2890613332 cites W2076216515 @default.
- W2890613332 cites W2076702475 @default.
- W2890613332 cites W2078226533 @default.
- W2890613332 cites W2079745003 @default.
- W2890613332 cites W2079935930 @default.
- W2890613332 cites W2080864929 @default.
- W2890613332 cites W2082037815 @default.
- W2890613332 cites W2082719796 @default.
- W2890613332 cites W2084053963 @default.
- W2890613332 cites W2085111837 @default.
- W2890613332 cites W2090359434 @default.
- W2890613332 cites W2092157292 @default.
- W2890613332 cites W2094756389 @default.
- W2890613332 cites W2097574296 @default.
- W2890613332 cites W2099020972 @default.
- W2890613332 cites W2109665034 @default.
- W2890613332 cites W2119079616 @default.
- W2890613332 cites W2125054186 @default.
- W2890613332 cites W2134459894 @default.
- W2890613332 cites W2141360791 @default.
- W2890613332 cites W2147303166 @default.
- W2890613332 cites W2160425716 @default.
- W2890613332 cites W2160622452 @default.
- W2890613332 cites W2163616760 @default.