Matches in SemOpenAlex for { <https://semopenalex.org/work/W2890616297> ?p ?o ?g. }
Showing items 1 to 83 of
83
with 100 items per page.
- W2890616297 endingPage "526" @default.
- W2890616297 startingPage "514" @default.
- W2890616297 abstract "Abstract Workers in various industries are often subject to challenging physical motions that may lead to work-related musculoskeletal disorders (WMSDs). To prevent WMSDs, health and safety organizations have established rules and guidelines that regulate duration and frequency of labor-intensive activities. In this paper, a methodology is introduced to unobtrusively evaluate the ergonomic risk levels caused by overexertion. This is achieved by collecting time-stamped motion data from body-mounted smartphones (i.e., accelerometer, linear accelerometer, and gyroscope signals), automatically detecting workers’ activities through a classification framework, and estimating activity duration and frequency information. This study also investigates various data acquisition and processing settings (e.g., smartphone’s position, calibration, window size, and feature types) through a leave-one-subject-out cross-validation framework. Results indicate that signals collected from arm-mounted smartphone device, when calibrated, can yield accuracy up to 90.2% in the considered 3-class classification task. Further post-processing the output of activity classification yields very accurate estimation of the corresponding ergonomic risk levels. This work contributes to the body of knowledge by expanding the current state in workplace health assessment by designing and testing ubiquitous wearable technology to improve the timeliness and quality of ergonomic-related data collection and analysis." @default.
- W2890616297 created "2018-09-27" @default.
- W2890616297 creator A5025182350 @default.
- W2890616297 creator A5029799530 @default.
- W2890616297 creator A5048498927 @default.
- W2890616297 date "2018-10-01" @default.
- W2890616297 modified "2023-10-12" @default.
- W2890616297 title "Automated ergonomic risk monitoring using body-mounted sensors and machine learning" @default.
- W2890616297 cites W153450900 @default.
- W2890616297 cites W1567619431 @default.
- W2890616297 cites W1969566186 @default.
- W2890616297 cites W1979930226 @default.
- W2890616297 cites W1982434105 @default.
- W2890616297 cites W1986949002 @default.
- W2890616297 cites W1998384586 @default.
- W2890616297 cites W2000437662 @default.
- W2890616297 cites W2002844166 @default.
- W2890616297 cites W2008311091 @default.
- W2890616297 cites W2017351764 @default.
- W2890616297 cites W2052607251 @default.
- W2890616297 cites W2056591916 @default.
- W2890616297 cites W2064721329 @default.
- W2890616297 cites W2083539525 @default.
- W2890616297 cites W2109192831 @default.
- W2890616297 cites W2113890143 @default.
- W2890616297 cites W2117711235 @default.
- W2890616297 cites W2119086949 @default.
- W2890616297 cites W2127095067 @default.
- W2890616297 cites W2149552744 @default.
- W2890616297 cites W2165603414 @default.
- W2890616297 cites W2247200904 @default.
- W2890616297 cites W2365294403 @default.
- W2890616297 cites W2466337456 @default.
- W2890616297 cites W2507244352 @default.
- W2890616297 cites W2557013366 @default.
- W2890616297 cites W2593148160 @default.
- W2890616297 cites W2598831904 @default.
- W2890616297 cites W2656075374 @default.
- W2890616297 cites W4248762213 @default.
- W2890616297 doi "https://doi.org/10.1016/j.aei.2018.08.020" @default.
- W2890616297 hasPublicationYear "2018" @default.
- W2890616297 type Work @default.
- W2890616297 sameAs 2890616297 @default.
- W2890616297 citedByCount "68" @default.
- W2890616297 countsByYear W28906162972019 @default.
- W2890616297 countsByYear W28906162972020 @default.
- W2890616297 countsByYear W28906162972021 @default.
- W2890616297 countsByYear W28906162972022 @default.
- W2890616297 countsByYear W28906162972023 @default.
- W2890616297 crossrefType "journal-article" @default.
- W2890616297 hasAuthorship W2890616297A5025182350 @default.
- W2890616297 hasAuthorship W2890616297A5029799530 @default.
- W2890616297 hasAuthorship W2890616297A5048498927 @default.
- W2890616297 hasBestOaLocation W28906162971 @default.
- W2890616297 hasConcept C117671659 @default.
- W2890616297 hasConcept C127413603 @default.
- W2890616297 hasConcept C154945302 @default.
- W2890616297 hasConcept C41008148 @default.
- W2890616297 hasConceptScore W2890616297C117671659 @default.
- W2890616297 hasConceptScore W2890616297C127413603 @default.
- W2890616297 hasConceptScore W2890616297C154945302 @default.
- W2890616297 hasConceptScore W2890616297C41008148 @default.
- W2890616297 hasFunder F4320306076 @default.
- W2890616297 hasLocation W28906162971 @default.
- W2890616297 hasOpenAccess W2890616297 @default.
- W2890616297 hasPrimaryLocation W28906162971 @default.
- W2890616297 hasRelatedWork W2037606917 @default.
- W2890616297 hasRelatedWork W2367857902 @default.
- W2890616297 hasRelatedWork W2377065977 @default.
- W2890616297 hasRelatedWork W2379140921 @default.
- W2890616297 hasRelatedWork W2386501286 @default.
- W2890616297 hasRelatedWork W2387104463 @default.
- W2890616297 hasRelatedWork W2388058536 @default.
- W2890616297 hasRelatedWork W2390008413 @default.
- W2890616297 hasRelatedWork W2899084033 @default.
- W2890616297 hasRelatedWork W3149185145 @default.
- W2890616297 hasVolume "38" @default.
- W2890616297 isParatext "false" @default.
- W2890616297 isRetracted "false" @default.
- W2890616297 magId "2890616297" @default.
- W2890616297 workType "article" @default.